USB Type-CTM controller with high voltage protection Datasheet - production data #### **Features** - Type-C attach and cable orientation detection - Power role support: source/sink/DRP - · Configurable start-up profiles - Integrated power switch for V_{CONN} supply: - Programmable current limit up to 600 mA - Overcurrent, overvoltage, and thermal protection - Undervoltage lockout - I²C interface and interrupt (optional connection to MCU) - Integrated V_{BUS} voltage monitoring - Integrated V_{BUS} and V_{CONN} discharge path - Short-to-VBUS protection on CC pins (22 V) and VBUS pins (28 V) - Dead battery mode support - Accessory mode support - High and/or low voltage power supply: - $V_{SYS} = [3.0 \text{ V}; 5.5 \text{ V}]$ - $V_{DD} = [4.1 \text{ V}; 22 \text{ V}]$ - ESD: 4 kV HBM 1.5 kV CDM Temperature range: -40 °C up to 105 °C ## **Applications** - Smart plugs, wall adapters, and chargers - Power hubs and docking stations - Smartphones and tablets - Gaming and PNDs - Displays - Wearable and Internet of Things (IoT) - Cameras, camcorders, and MP3 players - Any Type-C source or sink device ### **Description** The STUSB1600 is an IC controller, fully compliant with the USB Type-C cable and connector specification (rev. 1.2), which addresses 5 V USB Type-C port management both on the host and/or device side. It is designed for a broad range of applications and can handle the following USB Type-C functions: attach detection, plug orientation detection, host to device connection, V_{CONN} support, and V_{BUS} configuration. Thanks to its 20 V technology, it implements high voltage protection features against short-circuits to V_{BUS} up to 28 V. The device supports dead battery mode and is fully customizable thanks to an integrated non-volatile memory. Table 1. Device summary table | Order code | USB Type-C | R _p default | Package | Marking | |---------------|------------|------------------------|-----------------|---------| | STUSB1600QTR | Rev1.2 | USB default current | QFN24 EP 4x4 mm | 1600 | | STUSB1600AQTR | Rev1.2+ECR | 1.5 A | QFN24 EP 4x4 mm | 1600A | Contents STUSB1600 ## **Contents** | 1 | Fund | tional des | cription | . 9 | |---|------|----------------------|--|-----| | | 1.1 | Block over | view | . 9 | | 2 | Inpu | ts/outputs | | 10 | | | 2.1 | Pinout | | 10 | | | 2.2 | Pin list | | .11 | | | 2.3 | Pin descri | otion | 12 | | | | 2.3.1 C | C1/CC2 | 12 | | | | 2.3.2 C | C1DB/CC2DB | 12 | | | | 2.3.3 V | CONN · · · · · · · · · · · · · · · · · · | 12 | | | | 2.3.4 R | ESET | 13 | | | | 2.3.5 l ² | C interface pins | 13 | | | | 2.3.6 G | ND | 13 | | | | 2.3.7 V | BUS_VALID | 13 | | | | 2.3.8 A | TTACH | 13 | | | | 2.3.9 D | EBUG pins | 13 | | | | 2.3.10 A | _B_SIDE | 14 | | | | 2.3.11 V | BUS_SENSE | 14 | | | | 2.3.12 V | BUS_EN_SNK | 14 | | | | 2.3.13 V | BUS_EN_SRC | 14 | | | | 2.3.14 V | REG1V2 | 14 | | | | 2.3.15 V | SYS | 14 | | | | 2.3.16 V | REG2V7 | 14 | | | | 2.3.17 V | DD | 15 | | 3 | Feat | ure descrip | otion | 16 | | | 3.1 | CC interfa | ce | 16 | | | 3.2 | V _{BUS} pow | er path control | 17 | | | | | BUS monitoring | | | | | | _{BUS} discharge | | | | | | BUS power path assertion | | | | 3.3 | V _{CONN} su | oply | 20 | | | | 00 | CONN input voltage | | | | | | CONN application conditions | | | | | | | | STUSB1600 Contents | | | 3.3.3 | V _{CONN} monitoring | 20 | |---|--------------------|----------|--------------------------------------|----| | | | 3.3.4 | V _{CONN} discharge | 20 | | | | 3.3.5 | V _{CONN} control and status | 20 | | | | 3.3.6 | V _{CONN} power switches | 21 | | | 3.4 | Low po | ower standby mode 2 | 22 | | | 3.5 | Dead b | pattery mode | 23 | | | 3.6 | High v | oltage protection | 23 | | | 3.7 | Hardw | are fault management | 23 | | | 3.8 | Access | sory mode detection | 24 | | | | 3.8.1 | Audio accessory mode detection | 24 | | | | 3.8.2 | Debug accessory mode detection | 25 | | 4 | I ² C i | nterface | e | 27 | | | 4.1 | | and write operations | | | | 4.2 | | specifications | | | 5 | l ² C r | anistar | map | ۲n | | • | 5.1 | _ | er description | | | | 5.1 | 5.1.1 | ALERT STATUS | | | | | 5.1.1 | ALERT_STATUS_MASK_CTRL | | | | | 5.1.3 | CC_CONNECTION_STATUS_TRANS | | | | | 5.1.4 | CC_CONNECTION_STATUS | | | | | 5.1.5 | MONITORING_STATUS_TRANS | | | | | 5.1.6 | MONITORING_STATUS | | | | | 5.1.7 | CC_OPERATION_STATUS | | | | | 5.1.8 | HW_FAULT_STATUS_TRANS | 37 | | | | 5.1.9 | HW_FAULT_STATUS | 38 | | | | 5.1.10 | CC_CAPABILITY_CTRL | 39 | | | | 5.1.11 | CC_VCONN_SWITCH_CTRL | 40 | | | | 5.1.12 | VCONN_MONITORING_CTRL | 40 | | | | 5.1.13 | VBUS_MONITORING_RANGE_CTRL | 41 | | | | 5.1.14 | RESET_CTRL | 41 | | | | 5.1.15 | VBUS_DISCHARGE_TIME_CTRL | 42 | | | | 5.1.16 | VBUS_DISCHARGE_STATUS | 42 | | | | 5.1.17 | VBUS_ENABLE_STATUS | 42 | | | | 5.1.18 | CC_POWER_MODE_CTRL | 43 | | | | | | | | | | 5.1.19 VBUS_MONITORING_CTRL | |----|------|--| | 6 | Star | t-up configuration | | | 6.1 | User-defined parameters | | | 6.2 | Default start-up configuration | | 7 | Арр | lications | | | 7.1 | General information | | | | 7.1.1 Power supplies | | | | 7.1.2 Connection to MCU or application processor | | | 7.2 | USB Type-C typical applications | | | | 7.2.1 Source type application | | | | Application schematic | | | | Default start-up configuration | | | | V _{BUS} power path assertion | | | | Device state according to connection state | | | | 7.2.2 Sink type application | | | | Application schematic | | | | Default start-up configuration | | | | V _{BUS} power path assertion | | | | Device state according to connection state | | | | 7.2.3 Dual role type application | | | | Application schematic | | | | Default start-up configuration | | | | V _{BUS} power path assertion | | | | Device state according to connection state | | 8 | Elec | trical characteristics | | | 8.1 | Absolute maximum ratings | | | 8.2 | Operating conditions | | | 8.3 | Electrical and timing characteristics | | 9 | Pack | kage information | | | 9.1 | QFN24 EP 4x4 mm package information | | | 9.2 | Thermal Information | | 10 | Tern | ns and abbreviations73 | | STUSB1 | 600 | Conten | |--------|------------------|--------| | 11 | Revision history | 7/ | List of tables STUSB1600 ## List of tables | Table 1. | Device summary table | | |-----------|---|----| | Table 2. | Pin function list | | | Table 3. | Pin function descriptions | 12 | | Table 4. | I2C interface pin list | 13 | | Table 5. | Debug pin list | 13 | | Table 6. | USB data MUX select | 14 | | Table 7. | Conditions for VBUS power path assertion in source power role | 18 | | Table 8. | Conditions for VBUS power path assertion in sink power role | 19 | | Table 9. | Fault management conditions | | | Table 10. | Orientation and current capability detection in sink power role | 25 | | Table 11. | Orientation detection in source power role | | | Table 12. | Device address format | | | Table 13. | Register address format | 27 | | Table 14. | Register data format | 27 | | Table 15. | I ² C timing parameters - VDD = 5 V | 28 | | Table 16. | Register access legend | | | Table 17. | STUSB1600 register map overview | | | Table 18. | ALERT_STATUS register | | | Table 19. | ALERT_STATUS_MASK_CTRL register | | | Table 20. | CC_CONNECTION_STATUS_TRANS register | | | Table 21. | CC_CONNECTION_STATUS register | | | Table 22. | MONITORING_STATUS_TRANS register | | | Table 23. | MONITORING_STATUS register | | | Table 24. | CC_OPERATION_STATUS register | | | Table 25. | HW_FAULT_STATUS_TRANS register | | | Table 26. | HW_FAULT_STATUS register | | | Table 27. | CC_CAPABILITY_CTRL register | | | Table 28. | CC_VCONN_SWITCH_CTRL register | | | Table 29. | VCONN_MONITORING_CTRL register | | | Table 30. | VBUS_MONITORING_RANGE_CTRL register | | | Table 31. | RESET_CTRL register | | | Table 32. | VBUS_DISCHARGE_TIME_CTRL register | | | Table 33. | VBUS_DISCHARGE_STATUS register | | | Table 34. | VBUS_ENABLE_STATUS register | | | Table 35. | CC_POWER_MODE_CTRL register | | | Table 36. | VBUS_MONITORING_CTRL register | | | Table 37. | STUSB1600 user-defined parameters and default setting | | | Table 38. | Default setting for a source type application | | | Table 39. | Conditions for V _{BUS} power path assertion in source power role | | | Table 40. | Source power role with accessory support | | | Table 41. | Default setting for a sink type application | | | Table 42. | Conditions for V _{BUS} power path assertion in sink power role | | | Table 43. | Sink power role with accessory support | | | Table 44. | Default setting for a dual role type application | | | Table 45. | Conditions for V _{BUS} power path assertion in source power role | 62 | | Table 46. | Conditions for V _{BUS} power path assertion in sink power role | | | Table 47. | Dual power role with accessory support | | | Table 18 | Absolute maximum ratings | 65 | STUSB1600 List of tables | Table 49. | Operating conditions | 66 | |-----------|---------------------------------|----| | Table 50. | Electrical characteristics | 67 | | Table 51. | QFN24 EP 4x4 mm mechanical data | 71 | | Table 52. | Thermal information | 72 | | Table 53. | List of terms and abbreviations | 73 | | Table 54. | Document revision history | 74 | List of figures STUSB1600 # List of figures | Figure 1. | Functional block diagram | 9 | |------------|--|------| | Figure 2. | STUSB1600 pin connections | . 10 | | Figure 3. | VCONN to CC1 and CC2 power switch protection | . 21 | | Figure 4. | Read operation | . 27 | | Figure 5. | Write operation | . 28 | | Figure 6. | I ² C timing diagram | . 29 | | Figure 7. | Implementation example in source type application | . 49 | | Figure 8. | Implementation example in sink type application | . 53 | | Figure 9. | Implementation example in dual role type application | . 59 | | Figure 10. | QFN24 EP 4x4 mm
package outline | . 70 | | Figure 11 | OFN24 FP 4x4 mm recommended footprint | | ## 1 Functional description The STUSB1600 is a USB Type-C controller IC. It is designed to interface with the Type-C receptacle both on host and/or device sides. It is used to establish and manage the source-to-sink connection between two USB Type-C host and device ports. #### The major role of the STUSB1600 is to: - 1. Detect the connection between two USB Type-C ports (attach detection) - 2. Establish a valid source-to-sink connection - 3. Determine the attached device mode: source, sink or accessory - 4. Resolve cable orientation and twist connections to establish USB data routing (MUX control) - Configure and monitor the V_{BUS} power path - Manage V_{BUS} power capability: USB default, Type-C medium or Type-C high current mode - 7. Configure V_{CONN} when required #### The STUSB1600 also provides: - 1. Low power standby mode - 2. Dead battery mode - 3. I²C interface and interrupt (optional connection to the MCU) - 4. Start-up configuration customization: static through NVM and/or dynamic through I²C - 5. High voltage protection - 6. Accessory mode detection #### 1.1 Block overview Figure 1. Functional block diagram Inputs/outputs STUSB1600 ## 2 Inputs/outputs ## 2.1 Pinout Figure 2. STUSB1600 pin connections STUSB1600 Inputs/outputs ## 2.2 Pin list **Table 2. Pin function list** | Pin | Name | Туре | Description | Typical Connection | |-----|-------------|--------|---|--| | 1 | CC1DB | HV AIO | Dead battery enable on CC1 pin | CC1 pin if used or ground | | 2 | CC1 | HV AIO | Type-C configuration channel 1 | Type-C receptacle A5 | | 3 | VCONN | PWR | Power input for active plug | 5 V power source | | 4 | CC2 | HV AIO | Type-C configuration channel 2 | Type-C receptacle B5 | | 5 | CC2DB | HV AIO | Dead battery enable on CC2 pin | CC2 pin if used or ground | | 6 | RESET | DI | Reset input (active high) | _ | | 7 | SCL | DI | I ² C clock input | To I ² C master, ext. pull-up | | 8 | SDA | DI/OD | I ² C data input/output, active low opendrain | To I ² C master, ext. pull-up | | 9 | ALERT# | OD | I ² C interrupt, active low open-drain | To I ² C master, ext. pull-up | | 10 | GND | GND | Ground | Ground | | 11 | VBUS_VALID | OD | V _{BUS} detection, active low open-drain | To MCU if any, ext. pull-up | | 12 | ATTACH | OD | Attachment detection, active low open-drain | To MCU if any, ext. pull-up | | 13 | ADDR0 | DI | I ² C device address setting (see Section 4: I ² C interface) | Static | | 14 | DEBUG1 | OD | Debug accessory device detection in sink power role, active low open-drain | To MCU if any, ext. pull-up | | 15 | DEBUG2 | OD | Debug accessory device detection in source power role, active low opendrain | To MCU if any, ext. pull-up | | 16 | NC | | | Floating | | 17 | A_B_SIDE | OD | Cable orientation, active low open drain | USB super speed MUX select, ext. pull-up | | 18 | VBUS_SENSE | HV AI | V _{BUS} voltage monitoring and discharge path | From V _{BUS} | | 19 | VBUS_EN_SNK | HV OD | V _{BUS} sink power path enable, active low open drain | To switch or power system, ext. pull-up | | 20 | VBUS_EN_SRC | HV OD | V _{BUS} source power path enable, active low open drain | To switch or power system, ext. pull-up | | 21 | VREG_1V2 | PWR | 1.2 V internal regulator output | 1 μF typ. decoupling capacitor | | 22 | VSYS | PWR | Power supply from system | From power system, connect to ground if not used | | 23 | VREG_2V7 | PWR | 2.7 V internal regulator output | 1 μF typ. decoupling capacitor | | 24 | VDD | HV PWR | Power supply from USB power line | From V _{BUS} | | | EP | GND | Exposed pad is connected to ground | To ground | Inputs/outputs STUSB1600 Description **Type** D Digital Α Analog 0 Output pad ı Input pad IO Bidirectional pad OD Open-drain output PD Pull-down ΡU Pull-up HV High voltage **PWR** Power Ground Table 3. Pin function descriptions ## 2.3 Pin description **GND** #### 2.3.1 CC1/CC2 CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination, and system configuration management across the USB Type-C cable. #### 2.3.2 CC1DB/CC2DB CC1DB and CC2DB are used for dead battery mode when the STUSB1600 is configured in sink power role or dual power role. This mode is enabled by connecting CC1DB and CC2DB respectively to CC1 and CC2. Thanks to this connection, the pull down terminations on the CC pins are present by default even if the device is not supplied (see Section 3.5: Dead battery mode). Warning: CC1DB and CC2DB must be connected to ground when the STUSB1600 is configured in source power role or when dead battery mode is not supported. #### 2.3.3 V_{CONN} 12/75 This power input is connected to a power source that can be a 5 V power supply or a lithium battery. It is used to provide power to the local plug. It is internally connected to power switches that are protected against short circuit and overvoltage. This does not require any protection on the input side. When a valid source-to-sink connection is determined and the V_{CONN} power switches are enabled, V_{CONN} is provided by the source to the unused CC pin (see Section 3.3: V_{CONN} supply). DocID028937 Rev 2 STUSB1600 Inputs/outputs #### 2.3.4 RESET Active high reset. #### 2.3.5 I²C interface pins Table 4. I²C interface pin list | Name | Description | | |--------|---|--| | SCL | ² C clock, need external pull-up | | | SDA | ² C data, need external pull-up | | | ALERT# | I ² C interrupt, need external pull-up | | | ADDR0 | I ² C device address bit (see Section 4: I ² C interface) | | #### 2.3.6 GND Ground. #### 2.3.7 VBUS_VALID This pin is asserted during attachment when the V_{BUS} is detected on the VBUS_SENSE pin and the V_{BUS} voltage is within the valid operating range. The V_{BUS} valid state is also advertised in a dedicated I^2C register bit (see Section 5.1: Register description). #### 2.3.8 ATTACH This pin is asserted when a valid source-to-sink connection is established. It is also asserted when a connection to an accessory device is detected. The attachment state is also advertised in a dedicated I²C register bit (see Section 5.1: Register description). ## 2.3.9 DEBUG pins These pins are asserted when a debug accessory device is detected according to the running power role. Table 5. Debug pin list | Name | Description | |--------|---| | DEBUG1 | Asserted when Type-C FSM is in DebugAccessory.SNK state in sink power role | | DEBUG2 | Asserted when Type-C FSM is in UnorientedDebugAccessory.SRC or OrientedDebugAccessory.SRC states in source power role | Inputs/outputs STUSB1600 #### 2.3.10 A B SIDE This output pin provides cable orientation. It is used to establish USB SuperSpeed signal routing. The cable orientation is also advertised in a dedicated I²C register bit (see Section 5.1: Register description). This signal is not required in case of USB 2.0 support. Table 6. USB data MUX select | Value | CC pin position | |-------|--------------------------------| | HiZ | CC1 pin is attached to CC line | | 0 | CC2 pin is attached to CC line | #### 2.3.11 VBUS_SENSE This input pin is used to sense V_{BUS} presence, monitor V_{BUS} voltage, and discharge V_{BUS} on the USB Type-C receptacle side. #### 2.3.12 VBUS_EN_SNK In sink power role, this pin allows the incoming V_{BUS} power to be enabled when the connection to a source is established and V_{BUS} is in the valid operating range. The open drain output allows a PMOS transistor to be directly driven. The logic value of the pin is also advertised in a dedicated I^2C register bit (see Section 5.1: Register description). #### 2.3.13 **VBUS EN SRC** In source power role, this pin allows the outgoing V_{BUS} power to be enabled when the connection to a sink is established and V_{BUS} is in the valid operating range. The open drain output allows a PMOS transistor to be directly driven. The logic value of the pin is also advertised in a dedicated I^2C register bit (see Section 5.1: Register description). #### 2.3.14 VREG1V2 This pin is used only for external decoupling of the 1.2 V internal regulator. The recommended decoupling capacitor is: 1 μ F typ. (0.5 μ F min., 10 μ F max.). #### 2.3.15 VSYS This is the low power supply from the system, if there is any. It can be connected directly to a single cell lithium battery or to the system power supply delivering 3.3 V or 5 V. It is recommended to connect this pin to ground when it is not used. #### 2.3.16 VREG2V7 This pin is used only for external decoupling of the 2.7 V internal regulator. The recommended decoupling capacitor is: 1 μ F typ. (0.5 μ F min., 10 μ F max.). STUSB1600 Inputs/outputs #### 2.3.17 VDD This is the power supply from the USB power line for applications powered by V_{BUS} . In source power role, this pin can be used to sense the voltage level of the main power supply providing the V_{BUS} . It allows UVLO and OVLO thresholds to be considered independently on the VDD pin as additional conditions to enable the V_{BUS} power path through the VBUS_EN_SRC pin (see Section 3.2.3: V_{BUS} power path assertion). When the UVLO threshold detection is enabled, the VDD pin must be connected to the main power supply to establish the connection and to assert the V_{BUS} power path. Feature description STUSB1600 ## 3 Feature description #### 3.1 CC interface The STUSB1600 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks: the CC line interface block and the CC control logic block. #### The CC line interface block is used to: - Configure termination mode on the
CC pins relative to the power mode supported i.e. pull-up for source power role and pull-down for sink power role - Monitor the CC pin voltage values relative to the attachment detection thresholds - Configure V_{CONN} on the unconnected CC pin when required - Protect the CC pins against overvoltage #### The CC control logic block is used to: - Execute the Type-C FSM relative to the Type-C power mode supported - Determine the electrical state for each CC pin relative to the detected thresholds - Evaluate the conditions relative to the CC pin states and the V_{BUS} voltage value to transition from one state to another in the Type-C FSM - Detect and establish a valid source-to-sink connection - Determine the attached device mode: source, sink or accessory - Determine cable orientation to allow external routing of the USB data - Manage V_{BUS} power capability: USB default, Type-C medium or Type-C high current mode - Handle hardware faults # The CC control logic block implements the Type-C FSMs corresponding to the following Type-C power modes: - Source power role with accessory support - Sink power role with accessory support - Sink power role without accessory support - Dual power role with accessory support - Dual power role with accessory and Try.SRC support - Dual power role with accessory and Try.SNK support The default Type-C power mode is selected through NVM programming (see Section 6: Start-up configuration) and can be changed by software during operation through the I²C interface (see Section 5.1: Register description). STUSB1600 Feature description ## 3.2 V_{BUS} power path control #### 3.2.1 V_{BUS} monitoring The V_{BUS} monitoring block supervises (from the VBUS_SENSE pin) the V_{BUS} voltage on the USB Type-C receptacle side. It is used to check that the $V_{\mbox{\scriptsize BUS}}$ is within a valid voltage range: - To establish a valid source-to-sink connection according to USB Type-C standard specifications - To safely enable the V_{BUS} power path through the VBUS_EN_SRC pin or VBUS_EN_SNK pin depending on the power role It allows detection of unexpected V_{BUS} voltage conditions such as undervoltage or overvoltage relative to the valid V_{BUS} voltage range. When such conditions occur, the STUSB1600 behaves as follows: - At attachment, it prevents the source-to-sink connection and the V_{BUS} power path assertion - After attachment, it deactivates the source-to-sink connection and disables the V_{BUS} power path. In source power role, the device goes into error recovery state. In sink power role, the device goes into unattached state The valid V_{BUS} voltage range is defined from the V_{BUS} nominal voltage by a high threshold voltage and a low threshold voltage whose nominal values are respectively $V_{BUS}+5\%$ and $V_{BUS}-5\%$. The nominal threshold limits can be shifted by a fraction of V_{BUS} from +1% to +15% for the high threshold voltage and from -1% to -15% for the low threshold voltage. This means the threshold limits can vary from $V_{BUS}+5\%$ to $V_{BUS}+20\%$ for the high limit and from $V_{BUS}-5\%$ to $V_{BUS}-20\%$ for the low limit. The threshold limits are preset by default in the NVM with different shift coefficients depending on whether the device operates in source power role or in sink power role (see Section 8.3: Electrical and timing characteristics). The threshold limits can be changed independently through NVM programming (see Section 6: Start-up configuration) and also by software during attachment through the I²C interface (see Section 5.1: Register description). #### 3.2.2 V_{BUS} discharge The monitoring block also handles the internal V_{BUS} discharge path connected to the VBUS_SENSE pin. The discharge path is activated at detachment, or when the device goes into the error recovery state whatever the power role (see *Section 3.7: Hardware fault management*). The V_{BUS} discharge path is enabled by default in the NVM and can be disabled through NVM programming only (see *Section 6: Start-up configuration*). The discharge time duration is also preset by default in the NVM (see *Section 8.3: Electrical and timing characteristics*). The discharge time duration can be changed through NVM programming (see *Section 6: Start-up configuration*) and also by software through the I²C interface (see *Section 5.1: Register description*). Feature description STUSB1600 ## 3.2.3 V_{BUS} power path assertion The STUSB1600 can control the assertion of the V_{BUS} power path on the USB Type-C port, directly or indirectly, through the VBUS_EN_SRC and VBUS_EN_SNK pins according to the system power role. The tables below summarize the configurations of the STUSB1600 and the operation conditions that determine the electrical value of the VBUS_EN_SRC and VBUS_EN_SNK pins during system operation. Table 7. Conditions for V_{BUS} power path assertion in source power role | | | 300: | Operation condi | tions | | |-------------|---------------------|--|--|---|--| | Pin | Electrical
value | Type-C attached state | VDD pin
monitoring | VBUS_SENSE pin monitoring | Comment | | | 0 | Attached.SRC
or
UnorientedDebug
Accessory.SRC
or
OrientedDebug
Accessory.SRC | V _{DD} > V _{DDUVLO} if UVLO threshold detection enabled and/or V _{DD} < V _{DDOVLO} if OVLO threshold detection enabled | V _{BUS} < V _{MONUSBH} and V _{BUS} > V _{MONUSBL} if V _{BUS} voltage range detection enabled or V _{BUS} > V _{THUSB} if V _{BUS} voltage range detection disabled | The signal is asserted only if all the valid operation conditions are met | | VBUS_EN_SRC | HiZ | Any other state | V _{DD} < V _{DDUVLO} if UVLO threshold detection enabled or V _{DD} > V _{DDOVLO} if OVLO threshold detection enabled | V _{BUS} > V _{MONUSBH} or V _{BUS} < V _{MONUSBL} if V _{BUS} voltage range detection enabled or V _{BUS} < V _{THUSB} if V _{BUS} voltage range detection disabled | The signal is de-asserted when at least one non-valid operation condition is met | As specified in the USB Type-C standard specification, the attached state "Attached.SRC" is reached only if the voltage on the V_{BUS} receptacle side is at vSafe0V condition when a connection is detected. STUSB1600 Feature description Table 8. Conditions for V_{BUS} power path assertion in sink power role | | Electrical | | Operation condit | ions | | |---------------|------------|--|-----------------------|--|--| | Pin | value | Type-C attached state | VDD pin
monitoring | VBUS_SENSE pin monitoring | Comment | | VBUS_EN_SNK | 0 | Attached.SNK
or
Debug
Accessory.SNK | Not applicable | V _{BUS} < V _{MONUSBH} and V _{BUS} > V _{MONUSBL} if V _{BUS} voltage range detection enabled or V _{BUS} > V _{THUSB} if V _{BUS} voltage range detection disabled | The signal is asserted only if all the valid operation conditions are met | | VB03_EIN_SINK | HiZ | Any other state | Not applicable | V _{BUS} > V _{MONUSBH} or
V _{BUS}
< V _{MONUSBL} if V _{BUS}
voltage range detection
enabled
or
V _{BUS} < V _{THUSB} if V _{BUS}
voltage range detection
disabled | The signal is de-asserted when at least one non valid operation condition is met | "Type-C attached state" refers to the Type-C FSM states as defined in the USB Type-C standard specification and as described in the I²C register CC_OPERATION_STATUS (see Section 5.1: Register description). "VDD pin monitoring" is valid only in source power role. Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see Section 6: Start-up configuration) and also by software through the I²C interface (see Section 5.1: Register description). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is asserted only if the device is attached and the valid threshold conditions on VDD are met. Once the VBUS_EN_SRC pin is asserted, the VBUS_EN_SRC pin is done on VBUS_SENSE pin instead of the VDD pin. "VBUS_SENSE pin monitoring" relies, by default, on a valid V_{BUS} voltage range defined by a high limit $V_{MONUSBH}$ and a low limit $V_{MONUSBL}$. The voltage range condition can be disabled to consider UVLO threshold detection instead. The monitoring condition of the V_{BUS} voltage can be changed through NVM programming (see Section 6: Start-up configuration) and also by software through the I^2C interface (see Section 5.1: Register description). See Section 8.3: Electrical and timing characteristics for the threshold voltage description and value on VDD and VBUS_SENSE pins. Feature description STUSB1600 ## V_{CONN} supply #### 3.3.1 V_{CONN} input voltage V_{CONN} is a regulated supply used to power circuits in the plug of the USB3.1 full-featured cables and other accessories. The V_{CONN} nominal operating voltage is 5.0 V ±5%. #### 3.3.2 V_{CONN} application conditions The VCONN pin of the STUSB1600 is connected to each CC pin (CC1 and CC2) across independent power switches. The STUSB1600 applies V_{CONN} only to the CC pin not connected to the CC wire when all below conditions are
met: - The device is configured in source power role or dual power role - V_{CONN} power switches are enabled - A valid connection to a sink is achieved - Ra presence is detected on the unwired CC pin - A valid power source is applied on the V_{CONN} pin with respect to a predefined UVLO threshold The STUSB1600 does not provide V_{CONN} when it works in sink power role. ### 3.3.3 V_{CONN} monitoring The V_{CONN} monitoring block detects if V_{CONN} power supply is available on the VCONN pin. It is used to check that the V_{CONN} voltage is above a predefined undervoltage lockout (UVLO) threshold to allow V_{CONN} power switches to be enabled. The default value of the UVLO threshold is 4.65 V typical for powered cables operating at 5 V. This value can be changed by software to 2.65 V typical to support V_{CONN}-powered accessories working down to 2.7 V (see Section 5.1: Register description). ## 3.3.4 V_{CONN} discharge The behavior of Type-C FSMs is extended with an internal V_{CONN} discharge path capability on the CC pins in source power mode only. The discharge path is activated during 250 ms from sink detachment detection. This feature is disabled by default. It can be activated through NVM programming (see Section 6: Start-up configuration) and also by software through the I²C interface (see Section 5.1: Register description). ## 3.3.5 V_{CONN} control and status The supplying conditions of V_{CONN} across the STUSB1600 are managed through the I^2C interface. Different I^2C registers and bits are used specifically for this purpose (see *Section 5.1: Register description*). #### 3.3.6 V_{CONN} power switches #### **Features** The STUSB1600 integrates two current limited high-side power switches with protection that tolerates high voltage up to 22 V on the CC pins. Each V_{CONN} power switch presents the following features: - Soft-start to limit inrush current - Constant current mode overcurrent protection - Adjustable current limit - Thermal protection - Undervoltage and overvoltage protection - Reverse current and reverse voltage protection Figure 3. V_{CONN} to CC1 and CC2 power switch protection #### **Current limit programming** The current limit can be set within the range 100 mA to 600 mA by a step of 50 mA. The default current limit is programmed through NVM programming (see Section 6: Start-up configuration) and can be changed by software through the I²C interface (see Section 5.1: Register description). At power-on or after a reset, the current limit takes the default value preset in the NVM. #### Fault management The table below summarizes the different fault conditions that could occur during the operation of the switch and the associated responses. An I²C alert is generated when a fault condition happens (see *Section 5.1: Register description*). Feature description STUSB1600 Table 9. Fault management conditions | Fault types | Fault conditions | Expected actions | |-----------------|--|--| | Short-circuit | CC output pin shorted to ground via very low resistive path causing rapid current surge | Power switch limits the current and reduces the output voltage. I ² C alert is asserted immediately thanks to VCONN_SW_OCP_FAULT bits. | | Overcurrent | CC output pin connected to a load that sinks current above programmed limit | Power switch limits the current and reduces the output voltage. I ² C alert is asserted immediately thanks to VCONN_SW_OCP_FAULT bits. | | Overheating | Junction temperature exceeding 145 °C due to any reason | Power switch is disabled immediately until the temperature falls below 145 °C minus hysteresis of 15 °C. I ² C alert is asserted immediately thanks to THERMAL_FAULT bit. STUSB1600 goes into transient error recovery state. | | Undervoltage | V _{CONN} input voltage drops below UVLO threshold minus hysteresis | Power switch is disabled immediately until the input voltage rises above the UVLO threshold. I ² C alert is asserted immediately thanks to VCONN_PRESENCE bit. | | Overvoltage | CC output pin voltage exceeds maximum operating limit of 6.0 V | Power switch is opened immediately until the voltage falls below the voltage limit. I ² C alert is asserted immediately thanks to VCONN_SW_OVP_FAULT bits. | | Reverse current | CC output pin voltage exceeds V _{CONN} input voltage when the power switch is turned-off | The reverse biased body diode of the back-to-back MOS switches is naturally disabled preventing current to flow from the CC output pin to the input. | | Reverse voltage | CC output pin voltage exceeds V _{CONN} input voltage of more than 0.35 V for 5 V when the power switch is turned-on | Power switch is opened immediately until the voltage difference falls below the voltage limit. I ² C alert is asserted immediately thanks to VCONN_SW_RVP_FAULT bits. | ## 3.4 Low power standby mode The STUSB1600 proposes a standby mode to reduce the device power consumption when no device is connected to the USB Type-C port. It is disabled by default and can be activated through NVM programming (see Section 6: Start-up configuration). When activated, the STUSB1600 enters standby mode at power-up, after a reset, or after a disconnection. In this mode, the CC interface and the voltages monitoring blocks are turned off. Only a monitoring circuitry is maintained active on the CC pins to detect a connection. When the connection is detected, all the internal circuits are turned on to allow normal operation. Standby mode does not operate when the device is configured in sink power role with accessory support (see *Section 6: Start-up configuration*). STUSB1600 Feature description ### 3.5 Dead battery mode Dead battery mode allows systems powered by a battery to be supplied by the V_{BUS} when the battery is discharged and to start the battery charging process. This mode is also used in systems that are powered through the V_{BUS} only. Dead battery mode is only supported in sink power role and dual power role configurations. It operates only if the CC1DB and CC2DB pins are connected respectively to the CC1 and CC2 pins. Thanks to these connections, the STUSB1600 presents a pull down termination on its CC pins and advertises itself as a sink even if the device is not supplied. When a source system connects to a USB Type-C port with the STUSB1600 configured in dead battery mode, it can detect the pull down termination, establish the source-to-sink connection, and provide the V_{BUS} . The STUSB1600 is then supplied thanks to the VDD pin connected to the V_{BUS} on the USB Type-C receptacle side. The STUSB1600 can finalize the source-to-sink connection and enable the power path on the V_{BUS} thanks to the VBUS_EN_SNK pin which allows the system to be powered. ## 3.6 High voltage protection The STUSB1600 can be safely used in systems or connected to systems that handle high voltage on the V_{BUS} power path. The device integrates an internal circuitry on the CC pins that tolerates high voltages and ensures protection up to 22 V in case of unexpected short circuits with the V_{BUS} or in the case of a connection to a device supplying high voltage on the V_{BUS} . ## 3.7 Hardware fault management The STUSB1600 handles hardware fault conditions related to the device itself and to the V_{BUS} power path during system operation. When such conditions happen, the circuit goes into a transient error recovery state named ErrorRecovery in the Type-C FSM. The error recovery state is sufficient to force a detach event. When entering in this state, the device de-asserts the V_{BUS} power path by disabling the VBUS_EN_SRC and VBUS_EN_SNK pins, and it removes the terminations from the CC pins during several tens of milliseconds. Then, it transitions to the unattached state related to the configured power mode. Feature description STUSB1600 The STUSB1600 goes into error recovery state when at least one condition listed below is met: - Whatever the power role: - If an overtemperature is detected, the "THERMAL_FAULT" bit set to 1b - In source power role only: - If an internal pull-up voltage on CC pins is below UVLO threshold, the "VPU_VALID" bit set to 0b - If an overvoltage is detected on the CC pins, the "VPU_OVP_FAULT" bit set to 1b - If the V_{BUS} voltage is out of the valid voltage range during attachment, the "VBUS_VALID" bit set to 0b - If an undervoltage is detected on the VDD pin during attachment when UVLO detection is enabled, the "VDD_UVLO_DISABLE" bit set to 0b - If an overvoltage is detected on the VDD pin during attachment when OVLO detection is enabled, the "VDD_OVLO_DISABLE" bit set to 0b The mentioned above I²C register bits give either the state of the hardware fault when it occurs or the setting conditions to detect the hardware fault (see Section 5.1: Register description). ### 3.8 Accessory mode detection The STUSB1600 supports the detection of audio accessory mode and debug accessory mode as defined in the USB Type-C standard specification with the following Type-C power modes (see Section 6: Start-up configuration): - Source power role with accessory support - Sink power role with accessory support - Dual power role with accessory support - Dual power role with accessory and Try.SRC support - Dual power role with accessory and Try.SNK support #### 3.8.1 Audio accessory mode detection The STUSB1600 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by an Ra resistor from the connected device. The audio accessory detection is advertised through the CC_ATTACHED_MODE bits of the I²C register CC CONNECTION STATUS (see Section 5.1: Register description).
STUSB1600 Feature description #### 3.8.2 Debug accessory mode detection The STUSB1600 detects a connection to a debug and test system (DTS) when it operates either in sink power role or in source power role. The debug accessory detection is advertised by the DEBUG1 and DEBUG2 pins as well as through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS (see Section 5.1: Register description). • In sink power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled up by an R_p resistor from the connected device. The voltage levels on the CC1 and CC2 pins give the orientation and current capability as described in the table below. The DEBUG1 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The current capability of the DTS is given through the SINK_POWER_STATE bits of the I²C register CC_OPERATION_STATUS (see Section 5.1: Register description). Table 10. Orientation and current capability detection in sink power role | # | CC1 pin
(CC2 pin) | CC2 pin
(CC1 pin) | Charging
current
configuration | A_B_SIDE pin
CC1/CC2
(CC2/CC1) | Current capability state SINK_POWER_STATE bit values | |---|---------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---| | 1 | R _p 3 A | R _p 1.5A | Default | HiZ (0) | PowerDefault.SNK (source supplies default USB current) | | 2 | R _p 1.5 A | R _p default | 1.5 A | HiZ (0) | Power1.5.SNK (source
supplies 1.5 A USB Type-C
current) | | 3 | R _p 3 A | R _p default | 3.0 A | HiZ (0) | Power3.0.SNK (source
supplies 3.0 A USB Type-C
current) | | 4 | R _p
def/1.5 A/3 A | R _p
def/1.5 A/3 A | Default | HiZ (HiZ) | PowerDefault.SNK (source supplies default USB current) | Feature description STUSB1600 • In source power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by an Rd resistor from the connected device. The orientation detection is performed in two steps as described in the table below. The DEBUG2 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised through the TYPEC_FSM_STATE bits of the I²C register CC_OPERATION_STATUS (see Section 5.1: Register description). Table 11. Orientation detection in source power role | # | CC1 pin
(CC2 pin) | CC2 pin
(CC1 pin) | Detection process | A_B_SIDE pin
CC1/CC2
(CC2/CC1) | Orientation detection state TYPEC_FSM_STATE bits value | |---|----------------------|----------------------|---|--------------------------------------|--| | 1 | Rd | Rd | 1 st step: debug
accessory mode
detected | HiZ (HiZ) | UnorientedDebugAccessory.SRC | | 2 | Rd | ≤Ra | 2 nd step: orientation
detected (DTS
presents a
resistance to GND
with a value ≤ Ra on
its CC2 pin) | HiZ (0) | OrientedDebugAccessory.SRC | STUSB1600 I²C interface ## 4 I²C interface ## 4.1 Read and write operations The I²C interface is used to configure, control and read the operation status of the device. It is compatible with the Philips I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals: - SCL Serial clock line: input clock used to shift data - SDA Serial data line: input/output bidirectional data transfers A filter rejects the potential spikes on the bus data line to preserve data integrity. The bidirectional data line supports transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first. The first bit must be high (START) followed by the 7-bit device address and the read/write control bit. Two 7-bit device address are available for STUSB1600 thanks to external programming of DevADDR0 through ADDR0 pin setting, i.e. 0x28 or 0x29. It allows two STUSB1600 devices to be connected on the same I^2C bus. Table 12. Device address format | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | |----------|----------|----------|----------|----------|----------|----------|------| | DevADDR6 | DevADDR5 | DevADDR4 | DevADDR3 | DevADDR2 | DevADDR1 | DevADDR0 | R/W | | 0 | 1 | 0 | 1 | 0 | 0 | ADDR0 | 0/1 | Table 13. Register address format | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | |----------|----------|----------|----------|----------|----------|----------|----------| | RegADDR7 | RegADDR6 | RegADDR5 | RegADDR4 | RegADDR3 | RegADDR2 | RegADDR1 | RegADDR0 | Table 14. Register data format | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | |-------|-------|-------|-------|-------|-------|-------|-------| | DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 | Figure 4. Read operation I²C interface STUSB1600 Figure 5. Write operation ## 4.2 Timing specifications The device uses a standard slave I²C channel at speed up to 400 kHz. Table 15. I²C timing parameters - $V_{DD} = 5 \text{ V}$ | Symbol | Parameter | Min. | Тур. | Max. | Unit | |---------------------|--|-------------------------|------|------|------| | F_{scl} | SCL clock frequency | 0 | | 400 | kHz | | t _{hd,sta} | Hold time (repeated) START condition | 0.6 | | _ | | | t _{low} | LOW period of the SCL clock | 1.3 | | _ | | | t _{high} | HIGH period of the SCL clock | 0.6 | | _ | 116 | | t _{su,dat} | Set-up time for repeated START condition | 0.6 | | _ | μs | | t _{hd,dat} | Data hold time | 0.04 | | 0.9 | | | t _{su,dat} | Data setup time | 100 | _ | _ | | | t _r | Rise time of both SDA and SCL signals | 20 + 0.1 C _b | | 300 | ns | | t _f | Fall time of both SDA and SCL signals | 20 + 0.1 C _b | | 300 | 113 | | t _{su,sto} | Setup time for STOP condition | 0.6 | | _ | | | t _{buf} | Bus free time between a STOP and START condition | 1.3 | | _ | μs | | C _b | Capacitive load for each bus line | _ | | 400 | pF | S DA V_{il} thd sta thd sta though the sta though the sta though the sta st Figure 6. I²C timing diagram I²C register map STUSB1600 # 5 I²C register map Table 16. Register access legend | Access code | Expanded name | Description | | |-------------|----------------|--|--| | RO | Read only | Register can be read only | | | R/W | Read/write | Register can be read or written | | | RC | Read and clear | Register can be read and is cleared after it is read | | Table 17. STUSB1600 register map overview | Address | Register name | Access | Description | |---------------|--------------------------------|--------|---| | 00h to
0Ah | Reserved | RO | Do not use | | 0Bh | ALERT_STATUS | RC | Alerts register linked to transition registers | | 0Ch | ALERT_STATUS_MASK_CTRL | R/W | Allows the interrupt mask on the ALERT_STATUS register to be changed | | 0Dh | CC_CONNECTION_STATUS_
TRANS | RC | Alerts about transition in CC_CONNECTION_STATUS register | | 0Eh | CC_CONNECTION_STATUS | RO | Gives status on CC connection | | 0Fh | MONITORING_STATUS_
TRANS | RC | Alerts about transition in MONITORING_STATUS register | | 10h | MONITORING_STATUS | RO | Gives status on V _{BUS} and V _{CONN} voltage monitoring | | 11h | CC_OPERATION_STATUS | RO | Gives status on CC operation modes | | 12h | HW_FAULT_STATUS_TRANS | RC | Alerts about transition in HW_FAULT_STATUS register | | 13h | HW_FAULT_STATUS | RO | Gives status on hardware faults | | 14h to
17h | Reserved | RO | Do not use | | 18h | CC_CAPABILITY_CTRL | R/W | Allows CC capabilities to be changed | | 19h to
1Dh | Reserved | RO | Do not use | | 1Eh | CC_VCONN_SWITCH_CTRL | R/W | Allows the current limit of V _{CONN} power switches to be changed | | 1Fh | Reserved | RO | Do not use | | 20h | VCONN_MONITORING_CTRL | R/W | Allows the monitoring conditions of V _{CONN} voltage to be changed | | 21h | Reserved | RO | Do not use | | 22h | VBUS_MONITORING_RANGE
_CTRL | R/W | Allows the voltage range for V _{BUS} monitoring to be changed | | 23h | RESET_CTRL | R/W | Controls the device reset by software | | | • | • | | STUSB1600 I²C register map Table 17. STUSB1600 register map overview (continued) | Address | Register name | Access | Description | |---------------|------------------------------|--------|--| | 24h | Reserved | RO | Do not use | | 25h | VBUS_DISCHARGE_TIME_
CTRL | R/W | Allows the V _{BUS} discharge time to be changed | | 26h | VBUS_DISCHARGE_STATUS | RO | Gives status on V _{BUS} discharge path activation | | 27h | VBUS_ENABLE_STATUS | RO | Gives status on V _{BUS} power path activation | | 28h | CC_POWER_MODE_CTRL | R/W | Allows the CC power mode to be changed | | 29h to
2Dh | Reserved | RO | Do not use | | 2Eh | VBUS_MONITORING_CTRL | R/W | Allows the monitoring conditions of V _{BUS} voltage to be changed | | 2Fh | Reserved | RO | Do not use | ## 5.1 Register description The reset column specified in the register descriptions below defines the default value of the registers at power-up or after a reset. The reset values with (NVM) index correspond to the user-defined parameters that can be customized by NVM re-programming if needed (see Section 6: Start-up configuration). #### 5.1.1 ALERT_STATUS Address: 0Bh Access: RC Note: this register indicates an alert has occurred Table 18. ALERT_STATUS register | Bit | Field name | Reset | Description | |-----|-------------------------|-------|--| | 7 | Reserved | 0b | Do not use | | 6 | CC_CONNECTION_STATUS_AL | 0b | 0b: cleared 1b: change occurred on CC_CONNECTION_STATUS_TRANS
register | | 5 | MONITORING_STATUS_AL | 0b | 0b: cleared 1b: change occurred on MONITORING_STATUS_TRANS register | | 4 | HW_FAULT_STATUS_AL | 0b | 0b: cleared 1b: change occurred on HW_FAULT_STATUS_TRANS register | | 3:0 | Reserved | 0000b | Do not use | I²C register map STUSB1600 When a bit value change occurs on one of the mentioned transition registers, it automatically sets the corresponding alert bit in the ALERT_STATUS register. #### 5.1.2 ALERT_STATUS_MASK_CTRL Address: 0Ch Access: R/W Note: this register is used to mask an event interrupt and prevent the assertion of the alert bit in the ALERT_STATUS register when the corresponding bit defined below is set to 1. Table 19. ALERT_STATUS_MASK_CTRL register | Bit | Field Name | Reset | Description | |-----|------------------------------|-------------|--| | 7 | Reserved | 1b | Do not use | | 6 | CC_CONNECTION_STATUS_AL_MASK | 1b
(NVM) | 0b: interrupt unmasked
1b: interrupt masked | | 5 | MONITORING_STATUS_AL_MASK | 1b
(NVM) | 0b: interrupt unmasked
1b: interrupt masked | | 4 | HW_FAULT_STATUS_AL_MASK | 1b
(NVM) | 0b: interrupt unmasked
1b: interrupt masked | | 3:0 | Reserved | 1111b | Do not use | The condition to generate an active-low ALERT signal is: [ALERT_STATUS bitwise AND (NOT ALERT_STATUS_MASK)] <> 0 ## 5.1.3 CC_CONNECTION_STATUS_TRANS Address: 0Dh Access: RC Note: This register indicates a bit value change has occurred in the CC_CONNECTION_STATUS register. Table 20. CC_CONNECTION_STATUS_TRANS register | Bit | Field name | Reset | Description | |-----|-----------------|----------|--| | 7:1 | Reserved | 0000000b | Do not use | | 0 | CC_ATTACH_TRANS | 0b | 0b: cleared 1b: transition occurred on CC_ATTACH bit | STUSB1600 I²C register map #### 5.1.4 CC_CONNECTION_STATUS Address: 0Eh Access: RO Note: this register gives the connection state of the CC pins and on associated operating modes of the device. Table 21. CC_CONNECTION_STATUS register | Bit | Field Name | Reset | Description | |-----|-------------------|-------------|--| | 7:5 | CC_ATTACHED_MODE | 000Ь | 000b: no device attached 001b: sink attached 010b: source attached 011b: debug accessory attached 100b: audio accessory attached 101b: do not use 111b: do not use | | 4 | DEVICE_POWER_MODE | 0b
(NVM) | 0b: operating in normal power mode 1b: operating in standby power mode | | 3 | CC_POWER_ROLE | 0b | 0b: operating as a sink 1b: operating as a source | | 2 | Reserved | 0b | Do not use | | 1 | CC_VCONN_SUPPLY | 0b | 0b: V _{CONN} is not supplied on CC pin
1b: V _{CONN} is supplied on CC pin | | 0 | CC_ATTACH | 0b | 0b: not attached 1b: attached | The DEVICE_POWER_MODE bit indicates the power consumption mode of the device at start-up and during operation: - In normal mode, all the internal circuits are turned on - In standby mode, the CC interface and the voltage monitoring blocks remain off until a connection is detected The standby power mode is disabled by default and can be activated through NVM programming (see Section 6: Start-up configuration). The CC_POWER_ROLE bit is relevant only when a connection is established and the device is attached. I²C register map STUSB1600 #### 5.1.5 MONITORING_STATUS_TRANS Address: 0Fh Access: RC Note: this register indicates a bit value change has occurred in the MONITORING_STATUS register. Table 22. MONITORING_STATUS_TRANS register | Bit | Field name | Reset | Description | |-----|----------------------|-------|---| | 7:4 | Reserved | 0000b | Do not use | | 3 | VBUS_VALID_TRANS | 0b | 0b: cleared 1b: transition occurred on VBUS_VALID bit | | 2 | VBUS_VSAFE0V_TRANS | 0b | 0b: cleared 1b: transition occurred on VBUS_VSAFE0V bit | | 1 | VBUS_PRESENCE_TRANS | 0b | 0b: cleared 1b: transition occurred on VBUS_PRESENCE bit | | 0 | VCONN_PRESENCE_TRANS | 0b | 0b: cleared 1b: transition occurred on VCONN_PRESENCE bit | #### 5.1.6 MONITORING_STATUS Address: 10h Access: RO Note: this register gives the current status of the V_{BUS} and V_{CONN} voltage monitoring done respectively on the VBUS_SENSE and VCONN pins. Table 23. MONITORING_STATUS register | Bit | Field name | Reset | Description | |-----|----------------|----------|---| | 7:4 | Reserved | 0000b | Do not use | | 3 | VBUS_VALID | 0b | 0b: V _{BUS} is outside valid V _{BUS} voltage range
1b: V _{BUS} is within valid V _{BUS} voltage range | | 2 | VBUS_VSAFE0V | 1b | 0b: V _{BUS} is above V _{BUS} VSafe0V threshold
1b: V _{BUS} is below V _{BUS} VSafe0V threshold | | 1 | VBUS_PRESENCE | 0b | 0b: V_{BUS} is below V_{BUS} UVLO threshold 1b: V_{BUS} is above V_{BUS} UVLO threshold | | 0 | VCONN_PRESENCE | 0b or 1b | 0b: V _{CONN} is below V _{CONN} UVLO threshold
1b: V _{CONN} is above V _{CONN} UVLO threshold | The default value of valid V_{BUS} voltage range can be changed in the VBUS_MONITORING_RANGE_CTRL register during the operation. The V_{BUS} vSafe0V threshold is set in the VBUS_MONITORING_CTRL register. It is used in source power role as a Type-C FSM condition to establish a valid device attachment. STUSB1600 I²C register map The V_{BUS} UVLO threshold is set by hardware. The V_{CONN} UVLO threshold is set in the VCONN_MONITORING_CTRL register. The reset value of the VCONN_PRESENCE bit is: - 0b when V_{CONN} is not supplied on the VCONN pin, or when V_{CONN} is supplied and the voltage level is below the UVLO threshold, or when the V_{CONN} threshold detection circuit is disabled - 1b when V_{CONN} is supplied on the VCONN pin and the voltage level is above UVLO threshold See Section 8.3: Electrical and timing characteristics for the threshold voltage description and value on VBUS_SENSE and VCONN pins. #### 5.1.7 CC_OPERATION_STATUS Address: 11h Access: RO Note: this register gives the current status of the device operating modes with respect to the Type-C FSM states as defined in the USB Type-C standard specification. This status is informative only and is not used to trigger any alert. Table 24. CC OPERATION STATUS register | Bit | Field name | Reset | Description | |-----|------------------|-------|---| | 7 | CC_PIN_ATTACHED | 0b | 0b: CC1 is attached
1b: CC2 is attached | | 6:5 | SINK_POWER_STATE | 00b | 00b: PowerDefault.SNK (source supplies default USB current) 01b: Power1.5.SNK (source supplies 1.5 A USB Type-C current) 10b: Power3.0.SNK (source supplies 3.0 A USB Type-C current) 11b: do not use | I²C register map STUSB1600 Table 24. CC OPERATION STATUS register (continued) | Bit | Field name | Reset | Description | |-------------|-----------------|---------------|---| | 4: 0 | TYPEC_FSM_STATE | OOh or
O8h | 00h: Unattached.SNK 01h: AttachWait.SNK 02h: Attached.SNK 03h: DebugAccessory.SNK 04h: reserved 05h: reserved 06h: reserved 07h: TryWait.SNK 08h: Unattached.SRC 09h: AttachWait.SRC 00h: Attached.SRC 00h: Try.SRC 00h: Unattached.Accessory 0Eh: AttachWait.Accessory | The reset value of TYPEC_FSM_STATE bits is: - 00h when the device operates in sink power role (unattached.SNK) - 08h when the device is operates in source power role (unattached.SRC) The CC_PIN_ATTACHED bit indicates which CC pin is connected to the CC line. Its value is consistent with the logic level of the A_B_SIDE output pin providing cable orientation. The SINK_POWER_STATE bits indicate the current level advertised by the source that the sink can consume when the device works in sink power role. The TYPEC_FSM_STATE bits indicate the current state of the Type-C FSM corresponding to the power mode defined in the CC_POWER_MODE_CTRL register. STUSB1600 I²C register map ### 5.1.8 **HW_FAULT_STATUS_TRANS** Address: 12h Access: RC Note: this register indicates a bit value change has occurred in the HW_FAULT_STATUS register. It also alerts when an overtemperature condition is met. Table 25. HW_FAULT_STATUS_TRANS register | Bit | Field name | Reset | Description | |-----|--------------------------|-------|---| | 7 | THERMAL_FAULT | 0b | 0b: cleared
1b: junction temperature is above temperature
threshold of 145 °C | | 6 | Reserved | 0b | Do not use | | 5 | VPU_OVP_FAULT_TRANS | 0b | 0b: cleared
1b: transition occurred on VPU_OVP_FAULT
bit | | 4 | VPU_VALID_TRANS | 0b | 0b: cleared 1b: transition occurred on VPU_VALID bit | | 3 | Reserved | 0b | Do not use | | 2 | VCONN_SW_RVP_FAULT_TRANS | 0b | 0b: cleared 1b: transition occurred on VCONN_SW_RVP_FAULT bits | | 1 | VCONN_SW_OCP_FAULT_TRANS | 0b | 0b: cleared 1b: transition occurred on VCONN_SW_OCP_FAULT bits | | 0 | VCONN_SW_OVP_FAULT_TRANS | 0b | 0b: cleared 1b: transition occurred on VCONN_SW_OVP_FAULT bits | I²C register map STUSB1600 ### 5.1.9 **HW_FAULT_STATUS** Address: 13h Access: RO Note: this register provides some information on hardware fault conditions related to the internal pull-up voltage in source power role and to the V_{CONN} power switches. Table 26. HW_FAULT_STATUS register | Bit | Field Name | Reset | Description | |-----|------------------------|-------
--| | 7 | VPU_OVP_FAULT | 0b | 0b: voltage on CC pins is below OVP threshold of 6.0 V 1b: voltage on CC pins is above OVP threshold of 6.0 V | | 6 | VPU_VALID | 1b | 0b: pull-up voltage on CC pins is below UVLO threshold of 2.8 V 1b: pull-up voltage on CC pins is above UVLO threshold of 2.8 V (safe condition) | | 5 | VCONN_SW_RVP_FAULT_CC1 | 0b | 0b: no reverse voltage on V _{CONN} power switch connected to CC1 1b: reverse voltage detected on V _{CONN} power switch connected to CC1 | | 4 | VCONN_SW_RVP_FAULT_CC2 | 0b | 0b: no reverse voltage on V _{CONN} power switch connected to CC2 1b: reverse voltage detected on V _{CONN} power switch connected to CC2 | | 3 | VCONN_SW_OCP_FAULT_CC1 | 0b | 0b: no short-circuit or overcurrent on V _{CONN} power switch connected to CC1 1b: short-circuit or overcurrent detected on V _{CONN} power switch connected to CC1 | | 2 | VCONN_SW_OCP_FAULT_CC2 | 0b | Ob: no short-circuit or overcurrent on V _{CONN} power switch connected to CC2 1b: short-circuit or overcurrent detected on V _{CONN} power switch connected to CC2 | | 1 | VCONN_SW_OVP_FAULT_CC1 | 0b | 0b: no overvoltage on V _{CONN} power switch connected to CC1 1b: overvoltage detected on V _{CONN} power switch connected to CC1 | | 0 | VCONN_SW_OVP_FAULT_CC2 | 0b | 0b: no overvoltage on V _{CONN} power switch connected to CC2 1b: overvoltage detected on V _{CONN} power switch connected to CC2 | The VPU_VALID and VPU_OVP_FAULT bits are related to the internal pull-up voltage applied on the CC pins when the device operates in source power role. They give some information on an internal supply issue that could prevent the device to detect a valid connection to a distant device. STUSB1600 I²C register map ### 5.1.10 CC_CAPABILITY_CTRL Address: 18h Access: R/W Note: when operating in source power role, this register allows the advertising of the current capability to be changed as defined in the USB Type-C standard specification and the V_{CONN} supply capability. Table 27. CC_CAPABILITY_CTRL register | Bit | Field name | Reset | Description | |-----|-----------------------|--|---| | 7:6 | CC_CURRENT_ADVERTISED | 00b ⁽¹⁾
(NVM)
01b ⁽²⁾
(NVM) | 00b: default USB current (500 mA or 900 mA) 01b: 1.5 A USB Type-C current 10b: 3.0 A USB Type-C current 11b: do not use | | 5 | Reserved | 1b | Do not use | | 4 | CC_VCONN_DISCHARGE_EN | Ob
(NVM) | 0b: V _{CONN} discharge disabled on CC pin
1b: V _{CONN} discharge enabled for 250 ms on CC
pin | | 3:1 | Reserved | 000b | Do not use | | 0 | CC_VCONN_SUPPLY_EN | 1b
(NVM) | 0b: V _{CONN} supply capability disabled on CC pin
1b: V _{CONN} supply capability enabled on CC pin | ^{1.} STUSB1600QTR. ^{2.} STUSB1600AQTR. I²C register map STUSB1600 ### 5.1.11 CC_VCONN_SWITCH_CTRL Address: 1Eh Access: R/W Note: this register allows the default current limit of the power switches supplying V_{CONN} on the CC pins to be changed. Table 28. CC_VCONN_SWITCH_CTRL register | Bit | Field name | Reset | Description | |-----|----------------------|----------------|--| | 7:4 | Reserved | 0000b | Do not use | | 3:0 | CC_VCONN_SWITCH_ILIM | 0000b
(NVM) | 0000b: 350 mA (default)
0001b: 300 mA
0010b: 250 mA
0011b: 200 mA
0100b: 150 mA
0101b: 100 mA
0110b: 400 mA
0111b: 450 mA
1000b: 550 mA
1001b: 550 mA | ### 5.1.12 VCONN_MONITORING_CTRL Address: 20h Access: R/W Note: this register allows the default voltage monitoring conditions for V_{CONN} to be modified. Table 29. VCONN_MONITORING_CTRL register | Bit | Field name | Reset | Description | |-----|----------------------|-------|--| | 7 | VCONN_MONITORING_EN | 1b | 0b: disables UVLO threshold detection on VCONN pin 1b: enables UVLO threshold detection on VCONN pin | | 6 | VCONN_UVLO_THRESHOLD | 0b | 0b: selects high UVLO threshold (default) 1b: selects low UVLO threshold (case where V _{CONN} -powered accessories operate down to 2.7 V) | | 5 | Reserved | 1b | Do not use | | 4 | Reserved | 0b | Do not use | | 3:0 | Reserved | 0000b | Do not use | Disabling the UVLO threshold detection on the VCONN pin deactivates the V_{CONN} power path and sets the VCONN_PRESENCE bit to 0b in the MONITORING_STATUS register. STUSB1600 I²C register map See Section 8.3: Electrical and timing characteristics for the threshold voltage description and value on VCONN pin. #### 5.1.13 VBUS_MONITORING_RANGE_CTRL Address: 22h Access: R/W Note: this register allows the low and high limits of the V_{BUS} monitoring voltage range to be changed during attachment. Table 30. VBUS_MONITORING_RANGE_CTRL register | Bit | Field name | Reset | Description | |-----|-----------------------|----------------|--| | 7:4 | SHIFT_HIGH_VBUS_LIMIT | 0000b
(NVM) | Binary coded V _{SHUSBH} coefficient to shift
up the nominal high voltage limit from 1%
(0001b) to 15% (1111b) of V _{BUS} voltage by
step of 1% | | 3:0 | SHIFT_LOW_VBUS_LIMIT | 0000b
(NVM) | Binary coded V _{SHUSBH} coefficient to shift
down the nominal low voltage limit from 1%
(0001b) to 15% (1111b) of V _{BUS} voltage by
step of 1% | The V_{BUS} voltage is fixed at 5.0 V. The nominal values of the high and low limits of the V_{BUS} monitoring voltage range are respectively V_{BUS} +5% and V_{BUS} -5%. Each coefficient V_{SHUSBH} and V_{SHUSBL} represents the fraction of V_{BUS} voltage that is either added or subtracted to the nominal value of the corresponding limit to determine the V_{BUS} monitoring voltage limits (see Section 8.3: Electrical and timing characteristics). When the STUSB1600 is in unattached state, the register takes the reset values. When a device is attached, the register takes the values set in the NVM (see Section 6: Start-up configuration) or the new ones set by software during attachment. The register is valid for both power roles. Depending on whether the device operates in source power role or sink power role, the register takes the values set in the NVM related to the running power role. #### 5.1.14 RESET_CTRL Address: 23h Access: R/W Note: this register allows the device to be reset by software. Table 31. RESET_CTRL register | Bit | Field name | Reset | Description | |-----|-------------|---------|--| | 7:1 | Reserved | 000000b | Do not use | | 0 | SW_RESET_EN | Ob | 0b: device reset is performed from hardware RESET pin 1b: forces the device reset as long as this bit value is set | I²C register map STUSB1600 The SW_RESET_EN bit acts as the hardware RESET pin except that the I²C control registers are not reset to their default values. They keep the last changed value. The SW_RESET_EN bit does not command the RESET pin. #### 5.1.15 VBUS_DISCHARGE_TIME_CTRL Address: 25h Access: R/W Note: this register contains the parameter used to define the V_{BUS} discharge time when the internal V_{BUS} discharge path is activated on the VBUS_SENSE pin. Table 32. VBUS_DISCHARGE_TIME_CTRL register | Bit | Field name | Reset | Description | |-----|---------------------------|--|--| | 7:4 | VBUS_DISCHARGE_TIME_TO_0V | 1010b ⁽¹⁾
(NVM)
0110b ⁽²⁾
(NVM) | Binary coded T _{DISPARAM} coefficient used to compute the V _{BUS} discharge time to 0 V: T _{DISUSB} = 84 ms (typical) * T _{DISPARAM} | | 3:0 | Reserved | 1111b | Do not use | - 1. STUSB1600QTR - 2. STUSB1600AQTR #### 5.1.16 VBUS DISCHARGE STATUS Address: 26h Access: RO Note: this register gives information, during operation, on the activation state of the internal V_{BUS} discharge path on the VBUS_SENSE pin. Table 33. VBUS_DISCHARGE_STATUS register | Bit | Field name | Reset | Description | |-----|-------------------|----------|--| | 7 | VBUS_DISCHARGE_EN | 0b | 0b: V _{BUS} discharge path is deactivated
1b: V _{BUS} discharge path is activated | | 6:1 | Reserved | 0000000b | Do not use | ### 5.1.17 VBUS_ENABLE_STATUS Address: 27h Access: R0 Note: this register gives some information, during operations, on the activation state of the V_{BUS} power path through VBUS_EN_SRC pin in source power role and VBUS_EN_SNK pin in sink power role. STUSB1600 I²C register map Table 34. VBUS_ENABLE_STATUS register | Bit | Field name | Reset | Description | |-----|----------------|-------|---| | 7:2 | Reserved | 0b | Do not use | | 1 | VBUS_SINK_EN | 0b | 0b: V _{BUS} sink power path is disabled
1b: V _{BUS} sink power path is enabled | | 0 | VBUS_SOURCE_EN | 0b | 0b: V _{BUS} source power path is disabled
1b: V _{BUS} source power path is enabled | ### 5.1.18 CC_POWER_MODE_CTRL Address: 28h Access: R/W Note: this register allows the default Type-C power mode to be changed if needed during an operation. It
requires that the hardware implementation of the targeted application is consistent with the functioning of the new Type-C power mode selected. Table 35. CC_POWER_MODE_CTRL register | Bit | Field name | Reset | Description | |-----|---------------|----------------------|--| | 7:3 | Reserved | 00000b | Do not use | | 2:0 | CC_POWER_MODE | 011 ^(NVM) | 000b: source power role with accessory support 001b: sink power role with accessory support 010b: sink power role without accessory support 011b: dual power role with accessory support 100b: dual power role with accessory and Try.SRC support 101b: dual power role with accessory and Try.SNK support 110b: do not use 111b: do not use | I²C register map STUSB1600 #### 5.1.19 VBUS_MONITORING_CTRL Address: 2Eh Access: R/W Note: this register allows the default monitoring conditions of the V_{BUS} voltage over the power path from the VDD and VBUS_SENSE pins to be modified. Table 36. VBUS_MONITORING_CTRL register | Bit | Field name | Reset | Description | |-----|--------------------------|--------------|---| | 7 | Reserved | 0b | Do not use | | 6 | VDD_OVLO_DISABLE | Ob
(NVM) | 0b: enables OVLO threshold detection on VDD pin 1b: disables OVLO threshold detection on VDD pin | | 5 | Reserved | 0b | Do not use | | 4 | VBUS_VALID_RANGE_DISABLE | Ob
(NVM) | 0b: enables valid V _{BUS} voltage range detection 1b: disables valid V _{BUS} voltage range detection (V _{BUS} UVLO threshold detection used instead) | | 3 | Reserved | 0b | Do not use | | 2:1 | VBUS_VSAFE0V_THRESHOLD | 00b
(NVM) | 00b: V_{BUS} vSafe0V threshold = 0.6 V
01b: V_{BUS} vSafe0V threshold = 0.9 V
10b: V_{BUS} vSafe0V threshold = 1.2 V
11b: V_{BUS} vSafe0V threshold = 1.8 V | | 0 | VDD_UVLO_DISABLE | 1b
(NVM) | 0b: enables UVLO threshold detection on VDD pin 1b: disables UVLO threshold detection on VDD pin | The VBUS_VALID_RANGE_DISABLE and VBUS_VSAFE0V_THRESHOLD bits are defining monitoring conditions applicable to the VBUS_SENSE pin connected to the USB Type-C receptacle side. The VBUS_VALID_RANGE_DISABLE bit allows the valid V_{BUS} voltage range condition to be substituted by the V_{BUS} UVLO threshold condition to establish a valid device attachment and to assert the V_{BUS} power path. The VBUS_VSAFE0V_THRESHOLD bit indicates the voltage value of the V_{BUS} vSafe0V threshold used in source power role as a Type-C FSM condition to establish a valid device attachment. The VDD_UVLO_DISABLE and VDD_OVLO_DISABLE bits are defining monitoring conditions applicable to the VDD supply pin when it is connected to the main power supply in source power role only: - When UVLO detection is enabled, the VBUS_EN_SRC pin is asserted only if the voltage on the VDD pin is above V_{DDUVLO} threshold - When OVLO detection is enabled, the VBUS_EN_SRC pin is asserted only if the voltage on the VDD pin is below a V_{DDOVLO} threshold STUSB1600 I²C register map See Section 8.3: Electrical and timing characteristics for the threshold voltage description and value on VDD and VBUS_SENSE pins. ## 6 Start-up configuration ### 6.1 User-defined parameters The STUSB1600 has a set of user-defined parameters that can be customized by NVM reprogramming and/or by software through the I²C interface. This feature allows the customer to change the preset configuration of the USB Type-C interface and to define a new configuration to meet specific customer requirements addressing various applications, use cases, or specific implementations. The NVM re-programming overrides the initial default setting to define a new default setting that is used at power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into dedicated I²C register bits (see Section 5.1: Register description). The NVM re-programming is possible with a customer password. When a default value is changed during functioning by software, the new setting remains in effect as long as the STUSB1600 operates or when it is changed again. But after power-off and power-up, or after a reset, the STUSB1600 takes back the default values defined in the NVM. Please refer to the NVM access and programming application note in order to read and change the default values of the parameters customizable by the NVM if needed. ### 6.2 Default start-up configuration The table below lists the user-defined parameters and indicates the default start-up configuration of the STUSB1600. Three types of user-defined parameters are specified in the table with respect to the "Customization type" column: - SW: indicates parameters that can be customized only by software through the I²C interface during system operations - NVM: indicates parameters that can be customized by NVM re-programming only - NVM/SW: indicates parameters that can be customized by NVM re-programming and/or by software through the I²C interface during system operations | Customization type | Parameter | Default value and description | I ² C register address | |--------------------|------------------------------|---|-----------------------------------| | NVM/SW | CC_CONNECTION_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | MONITORING_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | HW_FAULT_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM | STANDBY_POWER_MODE_DISABLE | 1b: disables standby power mode | n. a. | | NVM/SW | CC_CURRENT_ADVERTISED | STUSB1600QTR: 00b: default USB
STUSB1600AQTR: 01b: 1.5 A | 18h | | NVM/SW | CC_VCONN_DISCHARGE_EN | 0b: V _{CONN} discharge disabled on CC pin | 18h | Table 37. STUSB1600 user-defined parameters and default setting (continued) | Customization type | Parameter | Default value and description | I ² C register address | |--------------------|------------------------------|--|-----------------------------------| | NVM/SW | CC_VCONN_SUPPLY_EN | 1b: V _{CONN} supply capability enabled on CC pin | 18h | | NVM/SW | CC_VCONN_SWITCH_ILIM | 0000b: 350 mA | 1Eh | | SW | VCONN_MONITORING_EN | 1b: enables UVLO threshold detection on VCONN pin | 20h | | SW | VCONN_UVLO_THRESHOLD | 0b: high UVLO threshold of 4.65 V | 20h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SOURCE | STUSB1600QTR: 0111b: V_{SHUSBH} = 7% of V_{BUS} , high voltage limit $V_{MONUSBH}$ Source = V_{BUS} +12% STUSB1600AQTR: 0101b: V_{SHUSBH} = 5% of V_{BUS} , high voltage limit $V_{MONUSBH}$ Source = V_{BUS} +10% | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SOURCE | 0101b: V _{SHUSBL} = 5% of V _{BUS} , low voltage limit V _{MONUSBL} source = V _{BUS} -10% | 22h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SINK | $STUSB1600QTR: 0111b: V_{SHUSBH} = \\ 7\% \text{ of } V_{BUS}, \text{ high voltage limit} \\ V_{MONUSBH Sink} = V_{BUS} + 12\% \\ STUSB1600AQTR: 0101b: V_{SHUSBH} \\ = 5\% \text{ of } V_{BUS}, \text{ high voltage limit} \\ V_{MONUSBH Sink} = V_{BUS} + 10\% \\$ | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SINK | 1111b: V_{SHUSBL} = 15% of V_{BUS} , low voltage limit $V_{MONUSBL\ Sink}$ = V_{BUS} -20% | 22h | | SW | SW_RESET_EN | 0b: device reset is performed from hardware RESET pin | 23h | | NVM/SW | VBUS_DISCHARGE_TIME_TO_0V | $\begin{split} & \text{STUSB1600QTR: 1010b: T}_{\text{DISPARAM}} \\ & = 10, \\ & \text{discharge time T}_{\text{DISUSB}} = 840 \text{ ms} \\ & \text{STUSB1600AQTR:} \\ & \text{0110b:T}_{\text{DISPARAM}} = 6, \text{ discharge} \\ & \text{time T}_{\text{DISUSB}} = 504 \text{ ms} \end{split}$ | 25h | | NVM | VBUS_DISCHARGE_DISABLE | 0b: enables V _{BUS} discharge path | n. a. | | NVM/SW | CC_POWER_MODE | 011b: dual power role with accessory support | 28h | | NVM/SW | VDD_OVLO_DISABLE | 0b: enables OVLO threshold detection on VDD pin | 2Eh | | NVM/SW | VBUS_VALID_RANGE_DISABLE | 0b: enables valid V _{BUS} voltage range detection | 2Eh | | NVM/SW | VBUS_VSAFE0V_THRESHOLD | 00b: V _{BUS} vSafe0V threshold = 0.6 V | 2Eh | | NVM/SW | VDD_UVLO_DISABLE | 1b: disables UVLO threshold detection on VDD pin | 2Eh | ## 7 Applications The sections below are not part of the ST product specifications. They are intended to give a generic application overview to be used by the customer as a starting point for further implementation and customization. ST does not warrant compliance with customer specifications. Full system implementation and validation are under the customer's responsibility. #### 7.1 General information #### 7.1.1 Power supplies The STUSB1600 can be supplied in three different ways depending on the targeted application: - Through the VDD pin only for applications powered by V_{BUS} that operate either in source power role or in sink power role with dead battery mode support - Through the VSYS pin only for AC powered applications with a system power supply delivering 3.3 V or 5 V - Through the VDD and VSYS pins either for applications powered by a battery with dead battery mode support or for applications powered by V_{BUS} with a system power supply delivering 3.3 V or 5 V. When both VDD and VSYS power supplies are present, the low power supply VSYS is selected when VSYS voltage is above 3.1 V. Otherwise VDD is selected ### 7.1.2 Connection to MCU or application processor The connection to
an MCU or an application processor is optional. When a connection through the I²C interface is implemented, it provides extensive functionality during system operation. For instance, it may be used to: - 1. Define the port configuration during system boot (in case the NVM parameters are not customized during manufacturing) - 2. Change the default configuration at any time during operation - 3. Re-configure the port power mode (i.e. source, sink or dual role) - Adjust the port power capability in source power role according to contextual power availability and/or the power partitioning with other ports - Save system power by shutting down the DC-DC converter according to the attachment detection state - Provide a diagnostic of the Type-C connection and the VBUS power path in real time ## 7.2 USB Type-C typical applications ## 7.2.1 Source type application ## **Application schematic** Figure 7. Implementation example in source type application ## **Default start-up configuration** Table 38. Default setting for a source type application | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|------------------------------|--|---| | NVM/SW | CC_CONNECTION_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | MONITORING_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | HW_FAULT_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM | STANDBY_POWER_MODE_DISABLE | 1b: disables standby power mode | n. a. | | NVM/SW | CC_CURRENT_ADVERTISED | STUSB1600QTR: 00b: default USB
STUSB1600AQTR: 01b: 1.5 A | 18h | | NVM/SW | CC_VCONN_DISCHARGE_EN | 0b: VCONN discharge disabled on CC pin | 18h | | NVM/SW | CC_VCONN_SUPPLY_EN | 1b: VCONN supply capability enabled on CC pin | 18h | | NVM/SW | CC_VCONN_SWITCH_ILIM | 0000b: 350 mA | 1Eh | | SW | VCONN_MONITORING_EN | 1b: enables UVLO threshold detection on VCONN pin | 20h | | SW | VCONN_UVLO_THRESHOLD | 0b: high UVLO threshold of 4.65 V | 20h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SOURCE | STUSB1600QTR: 0111b: V_{SHUSBH} = 7% of V_{BUS} , high voltage limit $V_{MONUSBH}$ Source = V_{BUS} +12% STUSB1600AQTR: 0101b: V_{SHUSBH} = 5% of V_{BUS} , high voltage limit $V_{MONUSBH}$ Source = V_{BUS} +10% | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SOURCE | 0101b:V _{SHUSBL} = 5% of V _{BUS} , low
voltage limit V _{MONUSBL} Source = V _{BUS} -
10% | 22h | | SW | SW_RESET_EN | 0b: device reset is performed from hardware RESET pin | 23h | | NVM/SW | VBUS_DISCHARGE_TIME_TO_0V | STUSB1600QTR: 1010b: $T_{DISPARAM}$ = 10, discharge time T_{DISUSB} = 840 ms STUSB1600AQTR: 0110b: $T_{DISPARAM}$ = 6, discharge time T_{DISUSB} = 504 ms | 25h | | NVM | VBUS_DISCHARGE_DISABLE | 0b: enables V _{BUS} discharge path | n. a. | | NVM/SW | CC_POWER_MODE | 000b: source power role with accessory support ⁽¹⁾ | 28h | | NVM/SW | VDD_OVLO_DISABLE | 0b: enables OVLO threshold detection on VDD pin | 2Eh | | NVM/SW | VBUS_VALID_RANGE_DISABLE | 0b: enables valid V _{BUS} voltage range detection | 2Eh | Table 38. Default setting for a source type application (continued) | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|------------------------|--|---| | NVM/SW | VBUS_VSAFE0V_THRESHOLD | 00b: V _{BUS} vSafe0V threshold = 0.6 V | 2Eh | | NVM/SW | VDD_UVLO_DISABLE | 1b: disables UVLO threshold detection on VDD pin | 2Eh | ^{1.} Indicates parameter customized by NVM re-programming. # $V_{\mbox{\footnotesize BUS}}$ power path assertion Table 39. Conditions for $V_{\mbox{\scriptsize BUS}}$ power path assertion in source power role | | Electrical | | _ | | | | |-------------|------------|---|--|--|--|--| | Pin | value | Type-C attached state | | | Comment | | | VBUS_EN_SRC | 0 | Attached.SRC or
UnorientedDebug
Accessory.SRC
or
OrientedDebug
Accessory.SRC | V _{DD} < V _{DDOVLO} if
VDD pin is
supplied | V _{BUS} within valid
voltage range | The signal is asserted only if all the valid operation conditions are met | | | | HiZ | Any other state | V _{DD} > V _{DDOVLO} if VDD pin is supplied | V _{BUS} is out of valid voltage range | The signal is
de-asserted when at
least one non-valid
operation condition
is met | | ### Device state according to connection state Table 40. Source power role with accessory support | Connection state | CC1
pin | CC2
pin | Type-C
device state
CC_OPERATION_
STATUS register
@11h | A_B_SIDE
pin | VCONN
supply | VBUS_EN_SR
Cpin | CC_CONNECTION_STATUS register @0Eh | |--|----------------------------|------------|--|-----------------|-----------------|--------------------|------------------------------------| | Nothing attached | Open | Open | Unattached.SRC | HiZ | OFF | HiZ | 00h | | Sink attached | Rd | Open | Attached.SRC | HiZ | OFF | 0 | 2Dh | | | Open | Rd | | 0 | OFF | 0 | 2Dh | | Powered cable | Open | Ra | Unattacked SDC | HiZ | OFF | HiZ | 00h | | attached | without sink attached Ra O | | Unattached.SRC | HiZ | OFF | HiZ | 00h | | Powered cable
with sink
attached or
VCONN-powered | Rd | Ra | Attached.SRC | HiZ | CC2 | 0 | 2Fh | | accessory attached | Ra | Rd | | 0 | CC1 | 0 | 2Fh | | Debug
accessory
mode attached
source role | Rp | Rp | Unattached.SRC | HiZ | OFF | HiZ | 00h | | Debug
accessory
mode attached
sink role | Rd | Rd | UnorientedDebug
Accessory.SRC | HiZ | OFF | 0 | 6Dh | | Debug | Rd | ≤Ra | Orizonto di Diali | HiZ | OFF | 0 | 6Dh | | accessory
mode attached
sink role | ≤Ra | Rd | OrientedDebug
Accessory.SRC | 0 | OFF | 0 | 6Dh | | Audio adapter accessory mode attached | Ra | Ra | AudioAccessory | HiZ | OFF | HiZ | 81h | The value of the CC1 and CC2 pins is defined from a termination perspective and corresponds to the termination presented by the connected device. The CC_CONNECTION_STATUS register can report other values than the one presented in *Table 40*. In this table, it reflects the state transitions in Type-C FSM that can be ignored from the application stand point. ## 7.2.2 Sink type application ## **Application schematic** Figure 8. Implementation example in sink type application Note: Schematic configuration is in dead battery mode. ## **Default start-up configuration** Table 41. Default setting for a sink type application | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|------------------------------|--|---| | NVM/SW | CC_CONNECTION_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | MONITORING_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | HW_FAULT_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM | STANDBY_POWER_MODE_DISABLE | 1b: disables standby power mode | n. a. | | NVM/SW | CC_CURRENT_ADVERTISED | STUSB1600QTR: 00b: default USB
STUSB1600AQTR: 01b: 1.5 A | 18h | | NVM/SW | CC_VCONN_DISCHARGE_EN | 0b: VCONN discharge disabled on CC pin | 18h | | NVM/SW | CC_VCONN_SUPPLY_EN | 1b: VCONN supply capability enabled on CC pin | 18h | | NVM/SW | CC_VCONN_SWITCH_ILIM | 0000b: 350 mA | 1Eh | | SW | VCONN_MONITORING_EN | 1b: enables UVLO threshold detection on VCONN pin | 20h | | SW | VCONN_UVLO_THRESHOLD | 0b: high UVLO threshold of 4.65 V | 20h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SINK | $STUSB1600QTR: 0111b: V_{SHUSBH} = \\ 7\% \text{ of } V_{BUS}, \text{ high voltage limit} \\ V_{MONUSBH Sink} = V_{BUS} + 12\% \\ STUSB1600AQTR: 0101b: V_{SHUSBH} = \\ 5\% \text{ of } V_{BUS}, \text{ high voltage limit} \\ V_{MONUSBH Sink} = V_{BUS} + 10\% \\$ | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SINK | 1111b: V_{SHUSBL} = 15% of V_{BUS} , low voltage limit $V_{MONUSBL\ Sink}$ = V_{BUS} -20% | 22h | | SW | SW_RESET_EN | 0b: device reset is performed from hardware RESET pin | 23h | | NVM/SW | VBUS_DISCHARGE_TIME_TO_0V | STUSB1600QTR: 1010b: T _{DISPARAM}
=10, discharge time T _{DISUSB} = 840 ms
STUSB1600AQTR: 0110b:T _{DISPARAM}
=6, discharge time T _{DISUSB} = 504 ms | 25h | | NVM | VBUS_DISCHARGE_DISABLE | 0b: enables V _{BUS} discharge path | n. a. | | NVM/SW | CC_POWER_MODE | 001b: sink power role with accessory support ⁽¹⁾ | 28h | | NVM/SW | VDD_OVLO_DISABLE | 0b: enables OVLO threshold detection on VDD pin | 2Eh | | NVM/SW | VBUS_VALID_RANGE_DISABLE | 0b: enables valid V _{BUS} voltage range detection | 2Eh | Table 41. Default setting for a sink type application (continued) | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|------------------------|--|---| | NVM/SW | VBUS_VSAFE0V_THRESHOLD | 00b: V _{BUS} vSafe0V threshold = 0.6 V | 2Eh | | NVM/SW | VDD_UVLO_DISABLE | 1b: disables UVLO threshold detection on VDD pin | 2Eh | ^{1.} Indicates parameter customized by NVM re-programming. # V_{BUS} power path assertion Table 42.
Conditions for $V_{\mbox{\scriptsize BUS}}$ power path assertion in sink power role | | Electrical | • | _ | | | | |-------------|------------|--|----------------|--|--|--| | Pin | value | Type-C attached state | | | Comment | | | | 0 | Attached.SNK
or
Debug
Accessory.SNK | Not applicable | V _{BUS} is within valid voltage range | The signal is asserted only if all the valid operation conditions are met | | | VBUS_EN_SNK | HiZ | Any other state | Not applicable | V _{BUS} is out of valid voltage range | The signal is de-asserted when at least one non-valid operation condition is met | | ## Device state according to connection state Table 43. Sink power role with accessory support | | | | Silik power role | | , - | | | |--|--------------------------|--------------------------|--|-----------------|-----------------|--------------------|--| | Connection state | CC1 pin | CC2 pin | Type-C
device state
CC_OPERATION_
STATUS register
@11h | A_B_SIDE
pin | VCONN
supply | VBUS_EN_SNK
pin | CC_CONNECTION_
STATUSregister
@0Eh | | Nothing
attached | Open | Open | (Toggling)
Unattached.SNK
Unattached.Accesso
ry | HiZ | OFF | HiZ | 00h | | Source | Rp | Open or Ra | Attached.SNK | HiZ | OFF | 0 | 41h | | attached | Open or
Ra | Rp | Allached.Sivit | 0 | OFF | 0 | 41h | | Powered cable without | Open | Ra | (Toggling)
Unattached.SNK | HiZ | OFF | HiZ | 00h | | source
attached | Ra | Open | Unattached.Accesso
ry | HiZ | OFF | HiZ | 00h | | Debug
accessory
mode
attached
sink role | Rd | Rd | (Toggling)
Unattached.SNK
Unattached.Accesso
ry | HiZ | OFF | HiZ | 00h | | Debug
accessory
mode
attached
source role | Rp Def/
1.5 A/
3 A | Rp Def/
1.5 A/
3 A | Debug
Accessory.SNK
(Default USB) | HiZ | OFF | 0 | 61h | | Debug | Rp 3 A | Rp 1.5 A | | HiZ | OFF | 0 | 61h | | accessory
mode
attached
source role | Rp 1.5 A | Rp 3 A | Debug
Accessory.SNK
(Default USB) | 0 | OFF | 0 | 61h | | Debug | Rp 1.5 A | Rp def. | 5.1 | HiZ | OFF | 0 | 61h | | accessory
mode
attached
source role | Rp def. | Rp 1.5 A | Debug
Accessory.SNK
(1.5 A) | 0 | OFF | 0 | 61h | | Debug | Rp 3 A | Rp def. | 5. | HiZ | OFF | 0 | 61h | | accessory mode attached source role Debug Accessory.SNK (3.0 A) | Accessory.SNK | 0 | OFF | 0 | 61h | | | | Audio
adapter
accessory
mode
attached | Ra | Ra | AudioAccessory | HiZ | OFF | HiZ | 81h | Table 43. Sink power role with accessory support (continued) | Connection state | CC1 pin | CC2 pin | Type-C
device state
CC_OPERATION_
STATUS register
@11h | A_B_SIDE
pin | VCONN
supply | VBUS_EN_SNK
pin | CC_CONNECTION_
STATUSregister
@0Eh | |----------------------------|---------|---------|--|-----------------|-----------------|--------------------|--| | VCONN- | Rd | Ra | (Toggling) | HiZ | OFF | HiZ | 00h | | powered accessory attached | Ra | Rd | Unattached.SNK
Unattached.Accesso
ry | HiZ | OFF | HiZ | 00h | The value of the CC1 and CC2 pins is defined from a termination perspective and corresponds to the termination presented by the connected device. The CC_CONNECTION_STATUS register can report other values than the one presented in *Table 43*. In this table, it reflects the state transitions in Type-C FSM that can be ignored from the application stand point. ## 7.2.3 Dual role type application ## **Application schematic** Figure 9. Implementation example in dual role type application Note: Schematic configuration is in dead battery mode. ## **Default start-up configuration** Table 44. Default setting for a dual role type application | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|------------------------------|--|---| | NVM/SW | CC_CONNECTION_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | MONITORING_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM/SW | HW_FAULT_STATUS_AL_MASK | 1b: interrupt masked | 0Ch | | NVM | STANDBY_POWER_MODE_DISABLE | 1b: disables standby power mode | n. a. | | NVM/SW | CC_CURRENT_ADVERTISED | STUSB1600QTR: 00b: default USB
STUSB1600AQTR: 01b: 1.5 A | 18h | | NVM/SW | CC_VCONN_DISCHARGE_EN | 0b: VCONN discharge disabled on CC pin | 18h | | NVM/SW | CC_VCONN_SUPPLY_EN | 1b: VCONN supply capability enabled on CC pin | 18h | | NVM/SW | CC_VCONN_SWITCH_ILIM | 0000b: 350 mA | 1Eh | | SW | VCONN_MONITORING_EN | 1b: enables UVLO threshold detection on VCONN pin | 20h | | SW | VCONN_UVLO_THRESHOLD | 0b: high UVLO threshold of 4.65 V | 20h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SOURCE | STUSB1600QTR: 0111b: $V_{SHUSBH} = 7\%$ of V_{BUS} , high voltage limit $V_{MONUSBH \ Source} = V_{BUS} + 12\%$ STUSB1600AQTR: 0101b: $V_{SHUSBH} = 5\%$ of V_{BUS} , high voltage limit $V_{MONUSBH \ Source} = V_{BUS} + 10\%$ | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SOURCE | 0101b: V _{SHUSBL} = 5% of V _{BUS} , low voltage limit V _{MONUSBL} Source = V _{BUS} -10% | 22h | | NVM/SW | SHIFT_HIGH_VBUS_LIMIT_SINK | STUSB1600QTR: 0111b: V_{SHUSBH} = 7% of V_{BUS} , high voltage limit $V_{MONUSBH Sink}$ = V_{BUS} +12% STUSB1600AQTR: 0101b: V_{SHUSBH} = 5% of V_{BUS} , high voltage limit $V_{MONUSBH Sink}$ = V_{BUS} +10% | 22h | | NVM/SW | SHIFT_LOW_VBUS_LIMIT_SINK | 1111b: V _{SHUSBL} = 15% of V _{BUS} , low voltage limit V _{MONUSBL Sink} = V _{BUS} -20% | 22h | | SW | SW_RESET_EN | 0b: device reset is performed from hardware RESET pin | 23h | | NVM/SW | VBUS_DISCHARGE_TIME_TO_0V | STUSB1600QTR: 1010b: T _{DISPARAM} = 10, discharge time T _{DISUSB} = 840 ms
STUSB1600AQTR: 0110b:T _{DISPARAM} = 6, discharge time T _{DISUSB} = 504 ms | 25h | | NVM | VBUS_DISCHARGE_DISABLE | 0b: enables V _{BUS} discharge path | n. a. | Table 44. Default setting for a dual role type application (continued) | Customization type | Parameter | Default value and description | I ² C
register
address | |--------------------|--------------------------|--|---| | NVM/SW | CC_POWER_MODE | 011b: dual power role with accessory support | 28h | | NVM/SW | VDD_OVLO_DISABLE | 0b: enables OVLO threshold detection on VDD pin | 2Eh | | NVM/SW | VBUS_VALID_RANGE_DISABLE | 0b: enables valid V _{BUS} voltage range detection | 2Eh | | NVM/SW | VBUS_VSAFE0V_THRESHOLD | 00b: V _{BUS} vSafe0V threshold = 0.6 V | 2Eh | | NVM/SW | VDD_UVLO_DISABLE | 1b: disables UVLO threshold detection on VDD pin | 2Eh | # **V_{BUS}** power path assertion Table 45. Conditions for $V_{\mbox{\scriptsize BUS}}$ power path assertion in source power role | | Electrical | | | | | | |-------------|------------|--|--|---|--|--| | Pin | value | Type-C attached state | | | Comment | | | VBUS_EN_SRC | 0 | Attached.SRC
or
UnorientedDebug
Accessory.SRC
or
OrientedDebug
Accessory.SRC | V _{DD} < V _{DDOVLO} if
VDD pin is
supplied | V _{BUS} is within valid
voltage range | The signal is asserted only if all the valid operation conditions are met | | | | HiZ | Any other state | V _{DD} > V _{DDOVLO} if VDD pin is supplied | V _{BUS} is out of valid voltage range | The signal is
de-asserted when at
least one non-valid
operation condition
is met | | Table 46. Conditions for $V_{\mbox{\scriptsize BUS}}$ power path assertion in sink power role | | Electrical | | _ | | | | |-------------|------------|--|-----------------------|--|--|--| | Pin | value | Type-C attached state | VDD pin
monitoring | VBUS_SENSE pin monitoring | Comment | | | | 0 | Attached.SNK
or
Debug
Accessory.SNK | Not applicable | V _{BUS} is within valid voltage range | The signal is asserted only if all the valid operation conditions are met | | | VBUS_EN_SNK | HiZ | Any other state | Not applicable | V _{BUS} is out of valid voltage range | The signal is
de-asserted when at
least one non-valid
operation condition
is met | | ## Device state according to connection state Table 47. Dual power role with accessory support | | | | | | | ccessory sup | • | | |--|---|----------------------------|--|-----------------|-----------------|--------------------|--------------------|-------------------------------------| | Connection state | CC1
pin | CC2
pin | Type-C
device state
CC_OPERATION
_STATUS
register @11h | A_B_SIDE
pin | VCONN
supply | VBUS_EN_SRC
pin | VBUS_EN_SNK
pin | CC_CONNECTION _STATUS register @0Eh | | Nothing attached | Open | Open | (Toggling)
Unattached.SRC
Unattached.SNK | HiZ | OFF | HiZ | HiZ | 00h | | Sink |
Rd | Open | Attached.SRC | HiZ | OFF | 0 | HiZ | 2Dh | | attached | Open | Rd | | 0 | OFF | 0 | HiZ | 2Dh | | Powered cable without sink | Open | Ra | (Toggling)
Unattached.SRC | HiZ | OFF | HiZ | HiZ | 00h | | or source
attached | Ra | Open | Unattached.SNK | HiZ | OFF | HiZ | HiZ | 00h | | Powered cable with sink | Rd | Ra | | HiZ | CC2 | 0 | HiZ | 2Fh | | attached
or V _{CONN} -
powered
accessory
attached | attached or V _{CONN} . powered accessory | Attached.SRC | 0 | CC1 | 0 | HiZ | 2Fh | | | Debug
accessory
mode
attached
sink role | Rd | Rd | UnorientedDebug
Accessory.SRC | HiZ | OFF | 0 | ΗiZ | 6Dh | | Debug | Rd | ≤Ra | | HiZ | OFF | 0 | HiZ | 6Dh | | accessory
mode
attached
sink role | ≤Ra | Rd | OrientedDebug
Accessory.SRC | 0 | OFF | 0 | HiZ | 6Dh | | Audio
adapter
accessory
mode
attached | Ra | Ra | AudioAccessory | HiZ | OFF | HiZ | HiZ | 81h | | Source | Rp | Open
or Ra | Attached.SNK | HiZ | OFF | HiZ | 0 | 41h | | attached | Open or Ra | | | 0 | OFF | HiZ | 0 | 41h | | Debug
accessory
mode
attached
source role | Rp
def/
1.5
A/3 A | Rp
def/
1.5
A/3 A | Debug
Accessory.SNK
(default USB) | HiZ | OFF | HiZ | 0 | 61h | Table 47. Dual power role with accessory support (continued) | Connection state | CC1
pin | CC2
pin | Type-C
device state
CC_OPERATION
_STATUS
register @11h | A_B_SIDE
pin | VCONN
supply | VBUS_EN_SRC pin | VBUS_EN_SNK
pin | CC_CONNECTION
_STATUS
register @0Eh | |---------------------------------|-------------|-------------|--|-----------------|-----------------|-----------------|--------------------|---| | Debug
accessory | Rp 3
A | Rp
1.5 A | Debug | HiZ | OFF | HiZ | 0 | 61h | | mode
attached
source role | Rp
1.5 A | Rp 3
A | Accessory.SNK
(Default USB) | 0 | OFF | HiZ | 0 | 61h | | Debug
accessory | Rp
1.5 A | Rp
def. | Debug | HiZ | OFF | HiZ | 0 | 61h | | mode
attached
source role | Rp
def. | Rp
1.5 A | Accessory.SNK
(1.5 A) | 0 | OFF | HiZ | 0 | 61h | | Debug
accessory | Rp 3
A | Rp
def. | Debug | HiZ | OFF | HiZ | 0 | 61h | | mode
attached
source role | Rp
def. | Rp 3
A | Accessory.SNK
(3.0 A) | 0 | OFF | HiZ | 0 | 61h | The value of the CC1 and CC2 pins is defined from a termination perspective and corresponds to the termination presented by the connected device. The CC_CONNECTION_STATUS register can report other values than the one presented in *Table 47*. In this table, it reflects the state transitions in Type-C FSM that can be ignored from the application stand point. # 8 Electrical characteristics # 8.1 Absolute maximum ratings All voltages are referenced to GND. Table 48. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |--|---------------------------------------|------------|------| | V _{DD} | Supply voltage on VDD pin | 28 | | | V _{SYS} | Supply voltage on VSYS pin | 6 | | | V _{CC1,} V _{CC2}
V _{CC1DB,} V _{CC2DB} | High voltage on CC pins | 22 | | | Vvbus_en_src
Vvbus_en_snk
Vvbus_sense | High voltage on V _{BUS} pins | 28 | | | V _{SCL} , V _{SDA} V _{ALERT#} V _{RESET} V _{ATTACH} V _{A_B_SIDE} V _{VBUS_VALID} V _{DEBUG1} V _{DEBUG2} | Operating voltage on I/O pins | -0.3 to 6 | V | | V _{CONN} | V _{CONN} voltage | 6 | | | T _{STG} | Storage temperature | -55 to 150 | °C | | TJ | Maximum junction temperature | 145 | | | ESD | НВМ | 4 | kV | | ESD | CDM | 1.5 | ΚV | Electrical characteristics STUSB1600 # 8.2 Operating conditions **Table 49. Operating conditions** | Symbol | Parameter | Value | Unit | |--|--|------------|------| | V_{DD} | Supply voltage on VDD pin | 4.1 to 22 | | | V _{SYS} | Supply voltage on V _{SYS} pin | 3.0 to 5.5 | | | V _{CC1} , V _{CC2}
V _{CC1DB} , V _{CC2DB} | CC pins | 0 to 5.5 | | | V _V BUS_EN_SRC
V _V BUS_EN_SNK
V _V BUS_SENSE | High voltage pins | 0 to 22 | | | V _{SCL} , V _{SDA} V _{ALERT#} V _{RESET} V _{ATTACH} V _{A_B_SIDE} V _{VBUS_VALID} V _{DEBUG1} V _{DEBUG2} | Operating voltage on I/O pins | 0 to 4.5 | V | | V _{CONN} | V _{CONN} voltage | 2.7 to 5.5 | | | I _{CONN} | V _{CONN} rated current (default = 0.35 A) | 0.1 to 0.6 | Α | | T _A | Operating temperature | -40 to 105 | °C | # 8.3 Electrical and timing characteristics Unless otherwise specified: V_{DD} = 5 V, TA = 25 °C, all voltages are referenced to GND. **Table 50. Electrical characteristics** | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|--|--|--------------------|------------------|-----------------|----------------| | I _{DD (SRC)} Current consumption | | Device idle as a SOURCE (not connected, no communication) V _{SYS} @ 3.3 V V _{DD} @ 5.0 V | | 158
188 | | μΑ
μΑ | | I _{DD (SNK)} | Current consumption | Device idle as a SINK (not connected, no communication) V _{SYS} @ 3.3 V V _{DD} @ 5.0 V | | 113
140 | | μA
μA | | I _{STDBY} | Standby current consumption | Device in standby
(not connected, low power)
V _{SYS} @ 3.3 V
V _{DD} @ 5.0 V | | 33
53 | | μΑ
μΑ | | CC1 and CC | 2 pins | | | _ | | | | I _{P-USB}
I _{P-1.5}
I _{P-3.0} | CC current sources | CC pin voltage, V _{CC} = 0 to 2.6
V, 40 °C < T _A < +105 °C | -20%
-8%
-8% | 80
180
330 | 20%
8%
8% | uA
uA
uA | | V _{cco} | CC open pin voltage | CC unconnected, V _{DD} = 3.0 to 5.5 V | 2.75 | | | V | | R _d | CC pull-down resistors | -40 °C < T _A < 105 °C | -10% | 5.1 | +10% | kΩ | | V _{CCDB-1.5}
V _{CCDB-3.0} | CC pin voltage in dead battery condition | External $I_P = 180 \mu A$ applied into CC, external $I_P = 330 \mu A$ applied into CC, $V_{DD} = 0 V$, dead-battery function enabled | | | 1.2 2.0 | V
V | | R _{INCC} | CC input impedance | Pull-up and pull-down resistors off | 200 | | | kΩ | | V _{TH0.2} | Detection
threshold 1 | Max. Ra detection by source at $I_P = I_{P-USB}$, min. I_{P-USB} detection by sink on R_d , min. CC voltage for connected sink | 0.15 | 0.20 | 0.25 | V | | V _{TH0.4} | Detection
threshold 2 | Max. Ra detection by source at $I_P = I_{P-1.5}$ | 0.35 | 0.40 | 0.45 | V | | V _{TH0.66} | Detection
threshold 3 | Min. $I_{P_{-}1.5}$ detection by sink on R_d | 0.61 | 0.66 | 0.70 | V | | V _{TH0.8} | Detection
threshold 4 | Max. Ra detection by source at $I_P = I_{P-3.0}$ | 0.75 | 0.80 | 0.85 | V | | V _{TH1.23} | Detection
threshold 5 | Min. $I_{P_3.0}$ detection by sink on R_d | 1.16 | 1.23 | 1.31 | V | Electrical characteristics STUSB1600 Table 50. Electrical characteristics (continued) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|--|-------------------------------|------------------------------|------------------------------------|-------------| | V _{TH1.6} | Detection
threshold 6 | Max. R_d detection by source at $I_P = I_{P-USB}$ and $I_P = I_{P-1.5}$ | 1.50 | 1.60 | 1.65 | V | | V _{TH2.6} | Detection
threshold 7 | Max R _d detection by source at I _{P-3.0} , max. CC voltage for connected sink | 2.45 | 2.60 | 2.75 | V | | VCONN pin | and power switches | | | | | | | R _{VCONN} | V _{CONN} power path resistance | I _{VCONN} = 0.2 A,
-40 °C < T _A < 105 °C | 0.25 | 0.5 | 0.975 | Ω | | I _{OCP} | Overcurrent protection | Programmable current limit
threshold (from 100 mA to 600
mA by step of 50 mA) | 85
300
550 | 100
350
600 | 125
400
650 | mA | | V _{OVP} | Overvoltage protection on CC output pins | | 5.9 | 6 | 6.1 | V | | V _{UVP} | Undervoltage protection on VCONN input pin | Low UVLO threshold
High UVLO threshold (default) | 2.6
4.6 | 2.65
4.65 | 2.7
4.8 | V | | VDD pin mo | nitoring (source pov | ver role) | | | | | | V _{DDOVLO} | Overvoltage lockout | OVLO threshold detection enabled, VDD pin supplied | 5.8 | 6.0 | 6.2 | V | | V _{DDUVLO} | Undervoltage lockout | UVLO threshold detection enabled, VDD pin supplied | 3.8 | 3.9 | 4.0 | V | | VBUS_SENS | SE pin monitoring ar | nd driving | | | | | | V _{THUSB} | V _{BUS} presence
threshold
(UVLO) | V _{SYS} = 3.0 to 5.5 V | 3.8 | 3.9 | 4.0 | V | | V _{TH0V} | V _{BUS} safe 0 V
threshold
(vSafe0V) | V_{SYS} = 3.0 to 5.5 V, threshold programmable from 0.6 V to 1.8 V, default V_{THOV} = 0.6 V | 0.5
0.8
1.1
1.7 | 0.6
0.9
1.2
1.8 | 0.7
1.0
1.3
1.9 | V
V
V | | R _{DISUSB} | V _{BUS} discharge resistor | | 600 | 700 | 800 | Ω | | T _{DISUSB} Coefficient T _{DISPARAM} programmable by NVM, d STUSB1600QTR:T _{DISPAR} 10, T _{DISUSB} = 840 ms | | programmable by NVM, default
STUSB1600QTR:T _{DISPARAM} =
10, T _{DISUSB} = 840 ms
STUSB1600AQTR: T _{DISPARAM} | 70 *
T _{DISPARAM} | 84*
T _{DISPARAM} | 100 *
T _{DISPAR}
AM | ms | Table 50. Electrical characteristics (continued) | Symbol | Parameter | Test conditions Min. | | Тур. | Max. | Unit | |----------------------
---|--|-------------|--|----------|------| | V _{MONUSBH} | V _{BUS} monitoring
high voltage limit | Coefficient V _{SHUSBH} programmable by NVM from 1% to 15% of V _{BUS} by step of 1%, default STUSB1600QTR: V _{MONUSBH} Source/Sink = V _{BUS} +12% STUSB1600AQTR: V _{MONUSBH} Source/Sink = V _{BUS} +10% | | V _{BUS} +5%
+V _{SHUSBH} | | ٧ | | V _{MONUSBL} | V _{BUS} monitoring low voltage limit | Coefficient V _{SHUSBL} programmable by NVM from 1% to 15% of V _{BUS} by step of 1%, default V _{MONUSBL} Source = V _{BUS} -10% | | V _{BUS} -5%
-V _{SHUSBL} | | > | | | | V _{MONUSBL Sink} = V _{BUS} -20% | | | | | | Digital input/ | output (SCL, SDA, A | ALERT#, RESET, ATTACH, A_B | _SIDE, VBUS | _VALID, DEBU | G1, DEBU | G2) | | V _{IH} | High level input voltage | | 1.2 | | | V | | V _{IL} | Low level input voltage | | | | 0.35 | V | | V _{OL} | Low level output voltage | loh = 3 mA | | | 0.4 | V | | 20 V open-dr | ain outputs (VBUS_ | EN_SRC, VBUS_EN_SNK) | | | | | | V _{OL} | Low level output voltage | loh = 3 mA | | | 0.4 | V | Package information STUSB1600 # 9 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. # 9.1 QFN24 EP 4x4 mm package information Figure 10. QFN24 EP 4x4 mm package outline Table 51. QFN24 EP 4x4 mm mechanical data | Def | | Millimeters | | Inches | | | |------|------|-------------|------|--------|-------|-------| | Ref. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | 0.80 | 0.90 | 1.00 | 0.031 | 0.035 | 0.039 | | A1 | 0.00 | 0.02 | 0.05 | 0.000 | 0.001 | 0.002 | | b | 0.18 | 0.25 | 0.30 | 0.007 | 0.010 | 0.012 | | D | 3.95 | 4.00 | 4.05 | 0.156 | 0.157 | 0.159 | | D2 | 2.55 | 2.70 | 2.80 | 0.100 | 0.106 | 0.110 | | Е | 3.95 | 4.00 | 4.05 | 0.156 | 0.157 | 0.159 | | E2 | 2.55 | 2.70 | 2.80 | 0.100 | 0.106 | 0.110 | | е | 0.45 | 0.50 | 0.55 | 0.018 | 0.020 | 0.022 | | K | 0.15 | _ | _ | 0.006 | _ | _ | | L | 0.30 | 0.40 | 0.50 | 0.012 | 0.016 | 0.020 | Figure 11. QFN24 EP 4x4 mm recommended footprint Package information STUSB1600 ## 9.2 Thermal Information **Table 52. Thermal information** | Symbol | Parameter | Value | Unit | | |-----------------|--|-------|------|--| | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 37 | °C/W | | | $R_{\theta JC}$ | Junction-to-case thermal resistance | 5 | C/VV | | # 10 Terms and abbreviations Table 53. List of terms and abbreviations | Term | Description | | |-----------------|---|--| | Accessory modes | Audio adapter accessory mode. It is defined by the presence of Ra/Ra on the CC1/CC2 pins. | | | | Debug accessory mode. It is defined by the presence of Rd/Rd on CC1/CC2 pins in Source power role or R_p/R_p on CC1/CC2 pins in sink power role. | | | DFP | Downstream Facing Port, specifically associated with the flow of data in a USB connection. Typically, the ports on a HOST or the ports on a hub to which devices are connected. In its initial state, the DFP sources V_{BUS} and V_{CONN} and supports data. | | | DRP | Dual-role port. A port that can operate as either a source or a sink. The port role may be changed dynamically. | | | Sink | Port asserting Rd on the CC pins and consuming power from the $V_{\mbox{\scriptsize BUS}}$; most commonly a device. | | | Source | Port asserting $R_{\rm p}$ on the CC pins and providing power over the $V_{\rm BUS}$; most commonly a host or hub DFP. | | | UFP | Upstream facing port, specifically associated with the flow of data in a USB connection. The port on a device or a hub that connects to a host or the DFP of a hub. In its initial state, the UFP sinks the V_{BUS} and supports data. | | Revision history STUSB1600 # 11 Revision history **Table 54. Document revision history** | Date | Revision | Changes | |-------------|----------|--| | 30-Nov-2016 | 1 | Initial release | | 05-Sep-2017 | 2 | Updated: title, features, description and <i>Table 1</i> in cover page. Updated <i>Table 17</i> , <i>Table 20</i> , <i>Table 27</i> , <i>Table 31</i> , <i>Table 32</i> , <i>Table 35</i> , <i>Table 37</i> , <i>Table 38</i> , <i>Table 41</i> , <i>Table 44</i> , <i>Table 48</i> and <i>Table 49</i> . Updated Section 3.2.3, Section 5.1.4, Section 5.1.6, | | | | Section 5.1.12, Section 5.1.13, Section 5.1.19. | #### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2017 STMicroelectronics - All rights reserved